Skip to main content

Environmental Friendly Textile Processing

  • Reference work entry
  • First Online:

Abstract

All over the world, environmental considerations are now becoming vital factors during the selection of consumer goods including textiles. However, due to increased awareness of the nature of polluting textiles effluents, social pressures are increasing on textile processing units. Awareness about ecofriendliness in textiles is one of the important issues in recent years since textiles are used next to skin and called the second skin. Owing to the global consumer demand, research is being carried out in the sphere of new ecofriendly technology. Techniques like plasma, biotechnology, ultrasonic, supercritical carbon dioxide, and laser are quite new for the textile industry. There are no harmful chemicals, wet processes, waste water, and mechanical hazards to textiles involved in these techniques, thus offering many advantages against traditional wet techniques. They also have specific action on all types of fibers and textiles. This chapter gives a summary of the pollution generated from the textile industry and various techniques toward to the environmental friendly processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Periyasamy AP (2013) Non-formaldehyde crease resistance finishing on tencel with poly maleic acid. Int Dye 198:37–39. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84892585878&partnerID=40&md5=ae0f7290237e5db20224bd34d277184a

  2. Periyasamy AP (2016) Effect of PVAmHCl pre-treatment on the properties of modal fabric dyed with reactive dyes: an approach for salt free dyeing. J Text Sci Eng 6(262):1–9. https://doi.org/10.4172/2165-8064.1000262

    Article  Google Scholar 

  3. Periyasamy AP, Dhurai B (2011) Salt free dying. Asian Dye 8:47–50. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871866419&partnerID=40&md5=5b5fe5ff538c479070bc13384f77e113

  4. Hauser PJ (2000) Reducing pollution and energy requirements in cotton dyeing. Text Chem Color Am Dyest Report 32:44–48

    Google Scholar 

  5. Chequer FMD, de Oliveira GAR, Ferraz ERA et al (2013) Textile dyes: dyeing process and environmental impact. In: Günay M (ed) Eco-friendly text. Dye. Finish, pp 151–176

    Google Scholar 

  6. Roy Choudhury AK (2013) Green chemistry and the textile industry. Text Prog 45:3–143. https://doi.org/10.1080/00405167.2013.807601

    Article  Google Scholar 

  7. Periyasamy AP, Jiri M (2017) 10 – Denim and consumers’ phase of life cycle. In: Muthu SS (ed) Sustainability in denim. Woodhead Publishing Limited, Kidlington, United Kingdom, pp 257–282. https://doi.org/10.1016/B978-0-08-102043-2.00010-1

    Chapter  Google Scholar 

  8. Periyasamy AP, Wiener J, Militky J (2017) 4 – Life-cycle assessment of denim. In: Muthu SS (ed) Sustainability in denim. Woodhead Publishing Limited, Kidlington, United Kingdom, pp 83–110. https://doi.org/10.1016/B978-0-08-102043-2.00004-6

    Chapter  Google Scholar 

  9. Periyasamy AP, Militky J (2017) 7 – Denim processing and health hazards. In: Muthu SS (ed) Sustainability in denim. Woodhead Publishing Limited, Kidlington, United Kingdom, pp 161–196. https://doi.org/10.1016/B978-0-08-102043-2.00007-1

    Chapter  Google Scholar 

  10. (2014) Breakdown of electricity generation by energy source. 1. http://www.tsp-data-portal.org/Breakdown-of-Electricity-Generation-by-Energy-Source#tspQvChart

  11. Spengler JD, Sexton K (1983) Indoor air pollution: a public health perspective. Science 221:9–17

    Article  Google Scholar 

  12. Coppola L, Giunta R, Grassia A et al (1989) Air pollution by gasoline exhaust fumes: effect on platelet function and blood viscosity. Med Lav 80:187–191

    Google Scholar 

  13. Prockop LD, Chichkova RI (2007) Carbon monoxide intoxication: an updated review. J Neurol Sci 262:122–130. https://doi.org/10.1016/j.jns.2007.06.037

    Article  Google Scholar 

  14. Cobb N, Etzel RA (1991) Unintentional carbon monoxide-related deaths in the United States, 1979 through 1988. JAMA 266:659–663

    Article  Google Scholar 

  15. Textiles OE (2010) Volatile organic compounds (VOCs). In: O Eco Text. https://oecotextiles.wordpress.com/2010/03/17/volatile-organic-compounds-vocs/. Accessed 20 Oct 2016

  16. Igielska B, Wiglusz R, Sitko E, Nikel G (2003) Release of volatile organic compounds from textile floor coverings in higher temperatures. Rocz Panstw Zakl Hig 54:329–335

    Google Scholar 

  17. Challa L (2015) Impact of textiles and clothing industry on environment: approach towards eco-friendly textiles. In: Fiber2fashion. http://www.fibre2fashion.com/industry-article/1709/impact-of-textiles-and-clothing-industry-on-environment?page=1. Accessed 20 Oct 2016

  18. fiber2fashion (2015) Various pollutants released into environment by textile industry. In: Fiber2fashion. http://www.fibre2fashion.com/industry-article/6262/various-pollutants-released-into-environment-by-textile-industry?page=2. Accessed 20 Oct 2016

  19. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater In: Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants, Malik A, Grohmann E, Akhtar R (eds) . Springer, Dordrecht, Netherlands, pp 55–71. http://www.springer.com/gp/book/9789400778894

    Google Scholar 

  20. Manu B, Chaudhari S (2002) Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour Technol 82:225–231

    Article  Google Scholar 

  21. Scott A (2015) Cutting out textile pollution. Chem Eng News 93:18–19

    Google Scholar 

  22. Karthik T, Gopalakrishnan D (2014) Environmental analysis of textile value chain: an overview. In: Roadmap to sustainable textiles and clothing: environmental and social aspects of textiles and clothing supply chain. Muthu SS (ed). Springer Singapore, Singapore, pp 153–188

    Google Scholar 

  23. Ramesh Babu B, Parande AK, Raghu S (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

    Google Scholar 

  24. Periyasamy AP, Dhurai B, Thangamani K (2011) A study on fibrillation properties of Lyocell fiber. Colourage 58, 45–48. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871829768&partnerID=40&md5=4578354a05b4e1e15879e76c6ae9f464

  25. Zaharia C, Suteu D, Muresan A et al (2009) Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environ Eng Manag J 8:1359–1369

    Article  Google Scholar 

  26. Periyasamy AP, Dhurai B, Thangamani K (2011) Salt free dyeing: a new method of dyeing of Lyocell fabrics with reactive dyes. Autex Res J 11:14–17. http://www.autexrj.com/cms/zalaczone_pliki/3_01_11.pdf

  27. Shang SM (2013) Process control in dyeing of textiles In: process control in textile manufacturing. Woodhead Publishing Limited,  Kidlington, United Kingdom, pp 300–338

    Chapter  Google Scholar 

  28. Li Y, Hardin ZR (1997) Enzymatic scouring of cotton: effects on structure and properties. AATCC Rev 29:71–76

    Google Scholar 

  29. Sae-be P, Sangwatanaroj U, Punnapayak H (2007) Analysis of the products from enzymatic scouring of cotton. Biotechnol J 2:316–325. https://doi.org/10.1002/biot.200600080

    Article  Google Scholar 

  30. Aly AS, Sayed SM, Zahran MK (2010) One-step process for enzymatic desizing and bioscouring of cotton fabrics. J Nat Fibers 7:71–92. https://doi.org/10.1080/15440478.2010.481086

    Article  Google Scholar 

  31. Eren HA, Anis P, Davulcu A (2009) Enzymatic one-bath desizing – bleaching – dyeing process for cotton fabrics. Text Res J 79:1091–1098. https://doi.org/10.1177/0040517508099388

    Article  Google Scholar 

  32. Pereira L, Bastos C, Tzanov T et al (2005) Environmentally friendly bleaching of cotton using laccases. Environ Chem Lett 3:66–69. https://doi.org/10.1007/s10311-005-0004-3

    Article  Google Scholar 

  33. Gupta D, Natarajan S (2017) Cleaner process for shrink proofing of wool using ultraviolet radiation and sericin. J Text Inst 108:147–153. https://doi.org/10.1080/00405000.2016.1160757

    Article  Google Scholar 

  34. Cardamone JM, Yao J, Nuńez A (2004) Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems. Text Res J 74:887–898. https://doi.org/10.1177/004051750407401008

    Article  Google Scholar 

  35. Gulrajani ML (1992) Degumming of silk. Rev Prog Color Relat Top 22:79–89

    Article  Google Scholar 

  36. Singh HB, Bharati KA (2014) Methods of extraction. In: Handbook of natural dyes and pigments. Woodhead Publishing Limited, Delhi, India, pp 9–17

    Google Scholar 

  37. Patel BH (2011) Natural dyes, In: Handbook of textile and industrial dyeing. Woodhead Publishing Limited, Kidlington, United Kingdom, pp 395–424

    Chapter  Google Scholar 

  38. Khatri A, White M (2015) Sustainable dyeing technologies. In: Sustainable apparel. Blackburn R (ed) Woodhead Publishing Limited, Kidlington, United Kingdom, pp 135–160

    Google Scholar 

  39. UC Davis (2017) States of matter. https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Physical_Properties_of_Matter/States_of_Matter. Accessed 10 Jul 2017

  40. Thomas H (2007) Plasma modification of wool, R, In: Plasma technologies for textiles. Woodhead Publishing Limited, Kidlington, United Kingdom, pp 228–246

    Chapter  Google Scholar 

  41. Samanta KK, Jassal M, Agrawal AK (2009) Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surf Coat Technol 203:1336–1342. https://doi.org/10.1016/j.surfcoat.2008.10.044

    Article  Google Scholar 

  42. Panda PK, Jassal M, Agrawal AK (2016) In situ atmospheric pressure plasma treatment of cotton with monocarboxylic acids to impart crease-resistant functionality. Cellulose 23:993–1002. https://doi.org/10.1007/s10570-015-0849-y

    Article  Google Scholar 

  43. Panda PK, Rastogi D, Jassal M, Agrawal AK (2012) Effect of atmospheric pressure helium plasma on felting and low temperature dyeing of wool. J Appl Polym Sci 124:4289–4297. https://doi.org/10.1002/app.35410

    Article  Google Scholar 

  44. Parida D, Jassal M, Agarwal AK (2012) Functionalization of cotton by in-situ reaction of styrene in atmospheric pressure plasma zone. Plasma Chem Plasma Process 32:1259–1274. https://doi.org/10.1007/s11090-012-9404-x

    Article  Google Scholar 

  45. Kan CW, Wong CC (2013) Dyeing behavior of laser-treated polyester. Fibers Polym 14:230–235. https://doi.org/10.1007/s12221-013-0230-4

    Article  Google Scholar 

  46. Periyasamy AP (2011) Dyeing of textiles in super critical form. Man-Made Text India 39:167–174, https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960917734&partnerID=40&md5=4fb130e321afd335d71500d60207f0f4

  47. Karthikeyan K, Periyasamy AP (2011) Recent developments in protective textiles. Man-Made Text. India 39, 4–9. https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960917734&partnerID=40&md5=4fb130e321afd335d71500d60207f0f4

  48. Periyasamy AP (2016) Dyeing of poly ethylene terephthalate (PET) manufacturing, dyeing, advanced dyeing, quality control in dyeing industry, 1st edn. LAP Lambert Academic Publishing GmbH & Co. KG, Saarbrücken. https://www.researchgate.net/publication/308117640_Dyeing_of_Polyethylene_Terephthalate_PET_Manufacturing_Dyeing_Advanced_Dyeing_Quality_control_in_Dyeings

  49. Kim SS, Leem SG, Do GH et al (2003) Microwave heat dyeing of polyester fabric. Fibers Polym 4:204–209. https://doi.org/10.1007/BF02908280

    Article  Google Scholar 

  50. Kale MJ, Bhat NV (2011) Effect of microwave pretreatment on the dyeing behaviour of polyester fabric. Color Technol 127:365–371. https://doi.org/10.1111/j.1478-4408.2011.00332.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravin Prince Periyasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Periyasamy, A.P., Rwahwire, S., Zhao, Y. (2019). Environmental Friendly Textile Processing. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_176

Download citation

Publish with us

Policies and ethics