Skip to main content

Bioprinting and Biofabrication with Peptide and Protein Biomaterials

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1030))

Abstract

The ability to fabricate artificial tissue constructs through the controlled organisation of cells, structures and signals within a biomimetic scaffold offers significant promise to the field of regenerative medicine, drug delivery and tissue engineering. Advances in additive manufacturing technologies have facilitated the printing of spatially defined cell-laden artificial tissue constructs capable of providing biomimetic spatiotemporal presentation of biological and physical cues to cells in a designed multicomponent structure. Despite significant progress in the field of bioprinting, a key challenge remains in developing and utilizing materials that can adequately recapitulate the complexities of the native extracellular matrix on a nanostructured, chemical level during the printing process. This gives rise to the need for suitable materials - particularly in establishing effective control over cell fate, tissue vascularization and innervation. Recently, significant interested has been invested into developing candidate materials using protein and peptide-derived biomaterials. The ability of these materials to form highly printable hydrogels which are reminiscent of the native ECM has seen significant use in a variety of regenative applications, including both organ bioprinting and non-organ bioprinting. Here, we discuss the emerging technologies for peptide-based bioprinting applications, highlighting bioink development and detailing bioprinter processors. Furthermore, this work presents application specific, peptide-based bioprinting approaches, and provides insight into current limitations and future perspectives of peptide-based bioprinting techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

μCT:

Micro computed tomography

10 T1/2 :

Mouse embryo fibroblasts

ADSC:

Adipose derived stromal cells

AFA-LIFT:

absorbing film-assisted laser-induced forward transfer

B16:

Carcinoma cell line

BMSC:

Bone marrow derived mesenchymal stem cells

C2C12:

C2C12 myoblast cells

CaCl2 :

Calcium chloride

CB[6]:

Cucurbit[6]uril

DAH-HA:

1,6-diaminohexane (DAH)-conjugated HA

dECM:

Decellularized extracellular matrix

DPBS:

Dulbecco’s phosphate-buffered saline solution

ECM:

Extracellular Matrix

GAG:

Glycosaminoglycan

GelMA:

Gelatin methacryloyl

GG:

Gellan gum

H1ESCs:

H1 embryonic stem cells

HA:

Hyaluronic acid

HAC:

Human articular chondrocytes

HAp:

Hydroxyapatite

hASC:

Human adipose-derived stem cells

HAVIC:

Human aortic Valvular Interstitial cells

hCPC:

Human cardiac progenitor cells

HEK293:

Human embryonic kidney cell line

HepG2/C3A:

Human liver cancer cells (hepatocellular carcinoma)

hFB:

Human fibroblast cells

hKC:

Human keratinocyte cells

hMSC:

Human mesenchymal stem cells

HMVEC:

Human microvascular endothelial cells

HUVEC:

human umbilical vein endothelial cells

HNDF:

Human neonatal dermal fibroblasts

HSC:

Human bone marrow-derived mesenchymal stromal cells

hTMSC:

Human inferior turbinate-tissue derived mesenchymal stromal cells

L6:

Rat myoblast cell line

MAPLE-DW:

Matrix-Assisted Pulsed Laser Evaporation Direct Writing

MC3T3 E1:

Osteoblast precursor cells (Add to main article)

MCF-7:

Breast adenocarcinoma cells

MG63:

Osteoblast-like cells

MSC:

Mesenchymal stem cells

mTgase:

Microbial transglutaminise

NT2:

Neural cells

PBS:

Phosphate-buffered saline solution

PCL:

Polycaprolactone

PEG:

Poly(ethylene Glycol)

PEGDA:

Poly(ethylene Glycol)-di-acrylate

PEGDMA:

Poly(ethylene glycol) dimethacrylate

PEGMA:

Poly(ethylene glycol) methacrylate

PEGTA:

Poly(ethylene glycol)-tetra-acrylate

PEO:

Poly(ethylene oxide)

PLA:

Polylactic acid

PVA:

Polyvinyl alcohol

Ru/SPS:

Ruthenium/Sodium persulfate

SAP:

Self-Assembled Peptide

SF-G:

Silk-fibroin/Gelatin

SLA:

Stereolithography

SMC:

Smooth muscle cells

SPPS:

Solid phase peptide synthesis

TGF-β:

Transforming growth factor-β

VEGF:

Vascular endothelial growth factor

VIC:

Aortic valve leaflet interstitial cells

References

  • Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477

    Article  CAS  PubMed  Google Scholar 

  • Bammesberger SB, Kartmann S, Tanguy L, Liang D, Mutschler K, Ernst A, Zengerle R, Koltay P (2013) A low-cost, normally closed, solenoid valve for non-contact dispensing in the sub-μL range. Micromachines 4:9–21

    Article  Google Scholar 

  • Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang YS, Shin SR, Calzone G (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8:014101

    Article  PubMed  CAS  Google Scholar 

  • Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87:77–95

    Article  PubMed  Google Scholar 

  • Bogdani M, Korpos E, Simeonovic CJ, Parish CR, Sorokin L, Wight TN (2014) Extracellular matrix components in the pathogenesis of type 1 diabetes. Curr Diab Rep 14:1–11

    Article  CAS  Google Scholar 

  • Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36:450–460

    Article  PubMed  Google Scholar 

  • Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10:1502–1514

    Article  CAS  PubMed  Google Scholar 

  • Bruggeman KF, Rodriguez AL, Parish CL, Williams RJ, Nisbet DR (2016) Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel. Nanotechnology 27:385102

    Article  PubMed  CAS  Google Scholar 

  • Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719

    Article  CAS  Google Scholar 

  • Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359

    Article  CAS  PubMed  Google Scholar 

  • Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  CAS  PubMed  Google Scholar 

  • Chimene D, Lennox KK, Kaunas RR, Gaharwar AK (2016) Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 44:2090–2102

    Article  PubMed  Google Scholar 

  • Choi YJ, Kim TG, Jeong J, Yi HG, Park JW, Hwang W, Cho DW (2016) 3D cell printing of functional skeletal muscle constructs using skeletal muscle–derived bioink. Adv Healthc Mater 5:2636–2645

    Article  CAS  PubMed  Google Scholar 

  • Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279

    Article  CAS  PubMed  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubo N, Garcia M, del Cañizo JF, Velasco D, Jorcano JL (2016) 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9:015006

    Article  PubMed  Google Scholar 

  • Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6:1601118

    Article  CAS  Google Scholar 

  • Daly AC, Critchley SE, Rencsok EM, Kelly DJ (2016) A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8:045002

    Article  PubMed  Google Scholar 

  • Das S, Pati F, Choi Y-J, Rijal G, Shim J-H, Kim SW, Ray AR, Cho D-W, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  PubMed  Google Scholar 

  • de la Puente P, Ludeña D (2014) Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp Cell Res 322:1–11

    Article  PubMed  CAS  Google Scholar 

  • Dikovsky D, Bianco-Peled H, Seliktar D (2006) The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 27:1496–1506

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF (2001) Fibrinogen and fibrin. In: eLS. Wiley, Chichester

    Google Scholar 

  • Duan B (2017) State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng 45:195–209

    Article  PubMed  Google Scholar 

  • Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846

    Article  CAS  PubMed  Google Scholar 

  • Duarte Campos DF, Blaeser A, Buellesbach K, Sen KS, Xun W, Tillmann W, Fischer H (2016) Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater 5:1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Dubbin K, Hori Y, Lewis KK, Heilshorn SC (2016) Dual-stage crosslinking of a gel-phase bioink improves cell viability and homogeneity for 3D bioprinting. Adv Healthc Mater 5:2488–2492

    Article  CAS  PubMed  Google Scholar 

  • Einerson NJ, Stevens KR, Kao WJ (2003) Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials 24:509–523

    Article  CAS  PubMed  Google Scholar 

  • England S, Rajaram A, Schreyer DJ, Chen X (2017) Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration. Bioprinting 5:1–9

    Article  Google Scholar 

  • Ferris CJ, Gilmore KG, Wallace GG (2013) Biofabrication: an overview of the approaches used for printing of living cells. App Microbiol Biotechnol 97:4243–4258

    Article  CAS  Google Scholar 

  • Fortunato TM, Beltrami C, Emanueli C, De Bank PA, Pula G (2016) Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications. Sci Rep 6:25326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao G, Cui X (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett 38:203–211

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Schilling AF, Hubbell K, Yonezawa T, Truong D, Hong Y, Dai G, Cui X (2015a) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37:2349–2355

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Yonezawa T, Hubbell K, Dai G, Cui X (2015b) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • García-Martínez L, Campos F, Godoy-Guzmán C, del Carmen S-QM, Garzón I, Alaminos M, Campos A, Carriel V (2017) Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem Cell Biol 147:83–95

    Article  PubMed  CAS  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  PubMed  Google Scholar 

  • Guillemot F, Guillotin B, Fontaine A, Ali M, Catros S, Kériquel V, Fricain J-C, Rémy M, Bareille R, Amédée-Vilamitjana J (2011) Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull 36:1015–1019

    Article  CAS  Google Scholar 

  • Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57:490–500

    Article  CAS  Google Scholar 

  • Gurkan UA, El Assal R, Yildiz SE, Sung Y, Trachtenberg AJ, Kuo WP, Demirci U (2014) Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol Pharm 11:2151–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guvendiren M, Burdick JA (2013) Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol 24:841–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:032002

    Article  PubMed  CAS  Google Scholar 

  • Horgan CC, Rodriguez AL, Li R, Bruggeman KF, Stupka N, Raynes JK, Day L, White JW, Williams RJ, Nisbet DR (2016) Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides. Acta Biomater 38:11–22

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF (2017) Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater 47:14–24

    Article  CAS  PubMed  Google Scholar 

  • Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203

    Article  Google Scholar 

  • Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2:5319–5338

    Article  CAS  Google Scholar 

  • Irvine SA, Agrawal A, Lee BH, Chua HY, Low KY, Lau BC, Machluf M, Venkatraman S (2015) Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices 17:1–8

    Article  CAS  Google Scholar 

  • Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W (2016) Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater 33:88–95

    Article  CAS  PubMed  Google Scholar 

  • Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, Kim SW, Kwon S-M, Kim P-J, Cho D-W (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungst T, Smolan W, Schacht K, Scheibel T, Jr G (2016) Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 116:1496–1539

    Article  CAS  PubMed  Google Scholar 

  • Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe M (1998) A low power, small, electrostatically-driven commercial inkjet head. Proceed IEEE MEMS’ 98:63–68

    Google Scholar 

  • Karlsen TA, Jakobsen RB, Brinchmann JE (2016) Early molecular events during in vitro chondrogenesis. In: Atkinson K (ed) The biology and therapeutic application of mesenchymal cells. Wiley, Hoboken

    Google Scholar 

  • Kasoju N, Bora U (2012) Silk fibroin in tissue engineering. Adv Healthc Mater 1:393–412

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Lee H, Kim GH (2016) Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a collagen/genipin-bioink and an optimal 3D printing process. ACS Appl Mater Interfaces 8:32230–32240

    Article  CAS  PubMed  Google Scholar 

  • Kolesky DB, Truby RL, Gladman A, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  CAS  PubMed  Google Scholar 

  • Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Article  CAS  PubMed  Google Scholar 

  • Lau HK, Kiick KL (2014) Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 16:28–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, Chun W, Kim GH (2015) A new approach for fabricating collagen/ecm-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater 4:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA (2014) Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6:035020

    Article  PubMed  CAS  Google Scholar 

  • Lewis MP, Mudera V, Cheema U, Shah R (2009) Muscle tissue engineering. In: Meyer U, Meyer T, Handschel J, Wiesmann HP (eds) Fundamentals of tissue engineering and regenerative medicine. Springer, Berlin/Heidelberg

    Google Scholar 

  • Li S, Xiong Z, Wang X, Yan Y, Liu H, Zhang R (2009) Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym 24:249–265

    Article  CAS  Google Scholar 

  • Li R, Rodriguez A, Nisbet DR, Barrow CJ, Williams RJ (2015) Self-assembled peptide nanostructures for the fabrication of cell scaffolds. In: Castillo-Leon J, Svendsen WE (eds) Micro and nanofabrication using self-assembled biological nanostructures. Elsevier, Amsterdam

    Google Scholar 

  • Lim KS, Schon BS, Mekhileri NV, Brown GC, Chia CM, Prabakar S, Hooper GJ, Woodfield TB (2016) New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater Sci Eng 2:1752–1762

    Article  CAS  Google Scholar 

  • Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CA (2015) Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett 15:6919–6925

    Article  CAS  PubMed  Google Scholar 

  • Lynn A, Yannas I, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater 71:343–354

    Article  CAS  PubMed  Google Scholar 

  • MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880

    Article  CAS  PubMed  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  • Nerem RM, Seliktar D (2001) Vascular tissue engineering. Annu Rev Biomed Eng 3:225–243

    Article  CAS  PubMed  Google Scholar 

  • Nilasaroya A, Poole-Warren LA, Whitelock JM, Martens PJ (2008) Structural and functional characterisation of poly (vinyl alcohol) and heparin hydrogels. Biomaterials 29:4658–4664

    Article  CAS  PubMed  Google Scholar 

  • Nisbet DR, Williams RJ (2012) Self-assembled peptides: characterisation and in vivo response. Biointerphases 7:2

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Henmi C, Iwanaga S, Nakagawa H, Yamaguchi K, Akita K, Mochizuki S, Takiura K, Nakamura M (2008) Ink jet three-dimensional digital fabrication for biological tissue manufacturing: analysis of alginate microgel beads produced by ink jet droplets for three dimensional tissue fabrication. J Imaging Sci Technol 52:60201–60201–60201–60206

    Google Scholar 

  • Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

    Article  CAS  PubMed  Google Scholar 

  • Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31:706–721

    Article  CAS  PubMed  Google Scholar 

  • Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389

    Article  CAS  PubMed  Google Scholar 

  • Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67:312–318

    Article  CAS  PubMed  Google Scholar 

  • Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58:77–116

    Article  CAS  Google Scholar 

  • Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  PubMed  Google Scholar 

  • Ozbolat IT, Moncal KK, Gudapati H (2017) Evaluation of bioprinter technologies. Addit Manuf 13:179–200

    Article  CAS  Google Scholar 

  • Park JY, Gao G, Jang J, Cho D-W (2016) 3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration. J Mater Chem B 4:7521–7539

    Article  CAS  Google Scholar 

  • Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H, Kim D-H, Cho D-W (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugsley MK, Tabrizchi R (2000) The vascular system: an overview of structure and function. J Pharmacol Toxicol Methods 44:333–340

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Wang F, Chen C, Gong X, Yin L, Yang L (2016) Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord 17:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2:1800–1805

    Article  CAS  Google Scholar 

  • Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA (2013) Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2:57–71

    Article  CAS  PubMed  Google Scholar 

  • Richards D, Jia J, Yost M, Markwald R, Mei Y (2017) 3D bioprinting for vascularized tissue fabrication. Ann Biomed Eng 45:132–147

    Article  PubMed  Google Scholar 

  • Rodriguez A, Wang T-Y, Bruggeman K, Horgan C, Li R, Williams RJ, Parish CL, Nisbet D (2014) In vivo assessment of grafted cortical neural progenitor cells and host response to functionalized self-assembling peptide hydrogels and the implications for tissue repair. J Mater Chem B 2:7771–7778

    Article  CAS  Google Scholar 

  • Sadtler K, Singh A, Wolf MT, Wang X, Pardoll DM, Elisseeff JH (2016) Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat Rev Mater 1:16040

    Article  CAS  Google Scholar 

  • Sargeant TD, Desai AP, Banerjee S, Agawu A, Stopek JB (2012) An in situ forming collagen–PEG hydrogel for tissue regeneration. Acta Biomater 8:124–132

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  • Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2:032001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  CAS  PubMed  Google Scholar 

  • Sehnal F, Žurovec M (2004) Construction of silk fiber core in Lepidoptera. Biomacromolecules 5:666–674

    Article  CAS  PubMed  Google Scholar 

  • Shim J-H, Jang K-M, Hahn SK, Park JY, Jung H, Oh K, Park KM, Yeom J, Park SH, Kim SW (2016) Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 8:014102

    Article  PubMed  CAS  Google Scholar 

  • Skardal A, Atala A (2015) Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 43:730–746

    Article  PubMed  Google Scholar 

  • Skardal A, Devarasetty M, Kang H-W, Mead I, Bishop C, Shupe T, Lee SJ, Jackson J, Yoo J, Soker S, Atala A (2015) A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater 25:24–34

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv Mater 20:37–41

    Article  CAS  Google Scholar 

  • Spotnitz WD (2010) Fibrin sealant: past, present, and future: a brief review. World J Surg 34:632–634

    Article  PubMed  Google Scholar 

  • Tamada Y (2005) New process to form a silk fibroin porous 3-D structure. Biomacromolecules 6:3100–3106

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Inoue S, Mizuno S (1999) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29:269–276

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Tare RS, Yang L-Y, Williams DF, Ou K-L, Oreffo RO (2016) Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83:363–382

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajan P, Narayanan A (2001) Thrombin. In: eLS. John Wiley & Sons ltd, Chichester

    Google Scholar 

  • Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754

    Article  Google Scholar 

  • Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7:045009

    Article  PubMed  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  • Whelan D, Caplice N, Clover A (2014) Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 196:1–8

    Article  CAS  PubMed  Google Scholar 

  • Winter JO, Schmidt CE (2002) Biomimetic strategies and applications in the nervous system. In: Dillow A, Lowman A (eds) Biomimetic materials and design: biointerfacial strategies, tissue engineering, and targeted drug delivery. Marcel-Dekker, New York

    Google Scholar 

  • Wüst S, Godla ME, Müller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, He J, Nichol JW, Wang L, Hutson CB, Wang B, Du Y, Fan H, Khademhosseini A (2011) Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater 7:2384–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhang Y (2015) Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys 72:777–782

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT (2015) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3:134–143

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, Glazer RI, Zhang LG (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8:30017–30026

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Harris BT, Zhang LG (2016) Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting. Conf Proc IEEE Eng Med Biol Soc 2016:4185–4188

    Google Scholar 

  • Zimmermann W-H, Melnychenko I, Eschenhagen T (2004) Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25:1639–1647

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyd-Moss, M., Fox, K., Brandt, M., Nisbet, D., Williams, R. (2017). Bioprinting and Biofabrication with Peptide and Protein Biomaterials. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Advances in Experimental Medicine and Biology, vol 1030. Springer, Cham. https://doi.org/10.1007/978-3-319-66095-0_5

Download citation

Publish with us

Policies and ethics