Skip to main content

Modeling Problems of Spin Crossover Nanocrystals

  • Conference paper
  • First Online:
  • 1321 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Abstract

The most important approaches which describe the behavior of spin crossover compounds have been reviewed. Thermodynamic consideration of spin crossover phenomenon is one of the most general able to describe theoretically almost any kind of transition in spin crossover system. Microscopic Ising-like model makes it possible to divide the processes that occur in the magnetic molecules and cooperative processes with the aim of highlighting the nature of these phenomena. Ising-like approach is a versatile way to describe analytically and numerically the properties of spin crossover materials despite the simplified consideration of intermolecular interaction. Additionally, discussion of the specific phenomenological model of light-induced transition in spin crossover materials is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cambi L, Szegö L (1931) Über die magnetische susceptibilität der komplexen verbindungen. Ber Deutsch Chem Ges 64:2591–2598

    Article  Google Scholar 

  2. Cambi L, Malatesta L (1937) Magnetismus und polymorphie innerer komplexsalze: eisensalze der dithiocarbamidsäuren. Ber Deutsch Chem Ges 70:2067–2078

    Article  Google Scholar 

  3. Robinson MA, Busch DH (1963) Complexes derived from strong field ligands. XVI. The transition metal complexes of 2-pyridinalhydrazones. Inorg Chem 2:1171–1177

    Article  Google Scholar 

  4. König E, Madeja K (1966) Unusual magnetic behaviour of some iron(II)bis-(1,10-phenanthroline) complexes. Chem Commun 3:61–62

    Google Scholar 

  5. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem Phys Lett 105:1–4

    Article  ADS  Google Scholar 

  6. Hauser A, Vef A, Adler P (1991) Intersystem crossing dynamics in Fe(II) coordination compounds. J Chem Phys 95:8710–8717

    Article  ADS  Google Scholar 

  7. Hauser A (1991) Intersystem crossing in the [Fe(ptz)6](BF 4)2 spin crossover system (ptz = 1-propyltetriazole). J Chem Phys 94:2741–2748

    Article  ADS  Google Scholar 

  8. Gudyma Yu, Semenko O (1991) Nonequilibrium kinetics in spin-crossover compounds. Phys Status Solidi B 241:370–376

    Google Scholar 

  9. Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds I. Springer, Berlin

    Google Scholar 

  10. Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds II. Springer, Berlin

    Google Scholar 

  11. Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds III. Springer, Berlin

    Google Scholar 

  12. Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. John Wiley and Sons, Chichester

    Google Scholar 

  13. Gudyma Iu, Maksymov A, Ivashko V (2015) Spin-crossover nanocrystals and Ising model. In: Fesenko O, Yatsenko L (eds) Nanoplasmonics, nano-optics, nanocomposites, and surface studies. Springer, Cham, pp 165–192

    Chapter  Google Scholar 

  14. Reiher M (2002) Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals. Inorg Chem 41:6928–6935

    Article  Google Scholar 

  15. Lebègue S, Pillet S, Ángyán JG (2008) Modeling spin-crossover compounds by periodic DFT+U approach. Phys Rev B 78:024433

    Article  ADS  Google Scholar 

  16. Slichter CP, Drickamer HG (1972) Pressure-induced electronic changes in compounds of iron. J Chem Phys 56:2142–2160

    Article  ADS  Google Scholar 

  17. Sorai M, Seki S (1974) Phonon coupled cooperative low-spin1 A 1 high-spin5 T 2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals. J Phys Chem Solids 35:555–570

    Article  ADS  Google Scholar 

  18. Ksenofontov V, Spiering H, Schreiner A, Levchenko G, Goodwinc HA, Gütlich P (1999) The influence of hydrostatic pressure on hysteresis phase transition in spin crossover compounds. J Phys Chem Solids 70:393–399

    Article  ADS  Google Scholar 

  19. Koudriavtsev AB (1999) A modified Bragg and Williams approximation of the two-step spin crossover. Chem Phys 241:109–126

    Article  ADS  Google Scholar 

  20. Wajnflasz J (1970) Etude de la transition “Low Spin”–“High Spin” dans les complexes octaédriques d’ion de transition. Phys Status Solidi B 40:537–545

    Article  ADS  Google Scholar 

  21. Wajnflasz J, Pick R (1971) Transitions “Low Spin”–“High Spin” dans les complexes de Fe 2+. J Phys Colloques 32:C1-91–C1-92

    Google Scholar 

  22. Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F (1992) Ising-like model for the two-step spin-crossover. J Phys I 2:1381–1403

    Google Scholar 

  23. Bousseksou A, Varret F, Nasser J (1993) Ising-like model for the two-step spin-crossover of binuclear molecules. J Phys I 3:1463–1473

    Google Scholar 

  24. Papanikolaou D, Kosaka W, Margadonna S, Kagi H, Ohkoshi S, Prassides K (2007) Piezomagnetic behavior of the spin crossover Prussian blue analogue CsFe[Cr(CN)6]. J Phys Chem C 111:8086–8091

    Article  Google Scholar 

  25. Dely J, Bobák A (2007) Magnetic properties of the ternary alloy with a structure of Prussian blue analogs. Physica B 388:49–58

    Article  ADS  Google Scholar 

  26. Gudyma Iu, Maksymov A, Enachescu C (2014) Phase transition in spin-crossover compounds in the breathing crystal field model. Phys Rev B 89:224412

    Article  ADS  Google Scholar 

  27. Gudyma Iu, Ivashko V, Linares J (2014) Diffusionless phase transition with two order parameters in spin-crossover solids. J Appl Phys 116:173509

    Article  ADS  Google Scholar 

  28. Desaix A, Roubeau O, Jeftic J, Haasnoot JG, Boukheddaden K, Codjovi E, Linarès J, Noguès M, Varret F (1998) Light-induced bistability in spin transition solids leading to thermal and optical hysteresis. Eur Phys J B 6:183–193

    Article  ADS  Google Scholar 

  29. Gudyma Iu, Maksymov A, Enachescu C (2010) Decay of a metastable high-spin state in spin-crossover compounds: mean first passage time analysis. Eur Phys J B 78:167–172

    Article  ADS  Google Scholar 

  30. Gudyma Iu, Maksymov A (2012) Optically induced switching in spin-crossover compounds: microscopic and macroscopic models and their relationship. Appl Opt 51:C55–C61

    Article  Google Scholar 

Download references

Acknowledgements

One research of us (IuG) was supported by the National Scholarship Programme of the Slovak Republic. This work was also partially supported by the Grant VEGA No.1/0331/15 (AB). IuG thanks the theoretical group of the Institute of Physics for the hospitality at Faculty of Science, P. J. Šafárik University in Košice where this work was in progress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iurii Gudyma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gudyma, I., Maksymov, A., Bobák, A. (2017). Modeling Problems of Spin Crossover Nanocrystals. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_6

Download citation

Publish with us

Policies and ethics