Skip to main content

Capsicum annuum Bioactive Compounds: Health Promotion Perspectives

  • Living reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

Capsicum annum L. commonly known as bell pepper exhibits proven health as well as medicinal significance. It can be consumed either in fresh or processed form and is rich source of vitamin C, provitamin A, and calcium. Array of bioactive compounds especially antioxidants in its phytochemical profile make it an ideal choice for preventing cell damage, cancer insurgence, diabetes prevalence, cardiovascular disorders, cataracts, Alzheimer’s, and Parkinson’s disease. Major antioxidant compounds in capsicum are carotenoids, tocopherols, and capsaicinoids (capsacicin). Their anticancer role is attributed to their ability to act as scavengers of singlet molecular oxygen, reactive oxygen species (ROS), peroxyl radicals, and reactive nitrogen species (RNS). Capsaicinoids intake effectively reduced the triacyclglycerols, plasma total cholesterol (PTC), and non-high-density lipoprotein cholesterol, and thereby helps in the prevention of cardiovascular ailments. It also exhibit effective and proactive contribution against age-related ailments. Capsaicin exposure expressively repressed the initial adipogenic differentiation, maturation, and lipogenesis of adipocytes. Capsaicin also has ability to target the TRPV1 receptors in the C-fibers lead to their stimulation followed by desensitization that helps to improve the neurogenic bladder. So, it may serve as a potential emerging treatment for patients who are nonrespondent to conventional therapy especially those with neurogenic bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

18α-GA:

18 alpha-glycyrrhetinic acid

ABCA1:

ATP-binding cassette transporter

ABCG1:

ATP-binding cassette transporter-G1

ABCG5:

ATP-binding cassette transporter-G-5

AdipoR2:

Adiponectin gene/protein and its receptor

ADP:

Adenosine diphosphate

ALCAM:

Activated leukocyte cell adhesion molecule

AMPK:

Activation of activated protein kinase

Apo-A1:

Apolipoprotein-A1

apoM:

Apolipoprotein M

ATP:

Adenosine triphosphate

BAT:

Brown adipose tissue

BCC:

Basal carcinoma cells

BUN:

Blood urea nitrogen

C/EBPα:

C-enhancer-binding proteins

Ca2+ :

Calcium

CaMK-II:

Calmodulin-dependent protein kinase II

Capz:

Capsazepine

CCMSs:

Capsaicin-chitosan microspheres

CD36:

Cluster of differentiation-36

COX-2:

Cyclooxygenase-2

CRP:

C-reactive protein levels

CRT:

Calreticulin

Cx43:

Connexin 43

DCs:

Dendritic cells

DHC:

Dihydrocapsaicin

DNA:

Deoxyribonucleic acid

EC-LPS:

Lipopolysaccharide from Escherichia coli

EMT:

Epithelial mesenchymal transition

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinases

FABP4:

Fatty acid binding protein-4

FADD:

Fas-associated protein with death domain

FAK:

Focal adhesion kinase

GC:

Gastric cancer

GDM:

Gestational diabetes mellitus

Glu:

Glutamate

GSH:

Glutathione

GSSG:

Oxidized glutathione

HDL-C:

High density lipoprotein

HMGCR:

3-hydroxy-3-methylglutaryl-CoA reductase

HO-1:

Heme oxygenase-1

HSL:

Hormone sensitive lipase

HUVECs:

Human umbilical vein endothelial cells

ICD:

Immunogenic cell death

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

KA:

Kainic acid

Klf2:

Kruppel-like factor 2

LDL-C:

Low-density lipoprotein-cholesterol

LDL-R:

Low-density lipoprotein receptor

LPS:

Lipopolysaccharide

MDA:

Malondialdehyde

MS–MS:

Mass spectrometry

NDO:

Eurogenic detrusor overactive

NET:

Neuroendocrine tumor cells

NF-κB:

Nuclear factor-kappa B

NOD/SCID:

Nonobese diabetic/severe combined immunodeficiency

NPC1:

Niemann-Pick C1 protein

OH:

Hydroxyl

PC-3:

Pancreatic cancer

p-CaM:

Adhesion molecule

PCR:

Polymerase chain reaction

PPARdelta:

Peroxisome proliferator-activated receptor delta

PPARgamma:

Peroxisome proliferator-activated receptor gamma

PPARα:

Peroxisome proliferator-activated receptor-alpha

PPARγ:

Peroxisome proliferator-activated receptor gamma

PPARγ:

Peroxisome proliferator-activated receptor-gamma

PTPϵ:

Protein-tyrosine phosphatase ϵ

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SRA-1:

Steroid receptor RNA activator 1

SRB1:

Scavenger receptor class B member 1

TG:

Triglycerides

TIMP-1:

Tissue inhibitors of metalloproteinases-1

TNF-α:

Tumor necrosis factor-alpha

TRP:

Transient receptor potential

TRPV1:

Transient receptor potential vanilloid subtype 1

UCP2:

Uncoupling protein 2

UV:

Ultraviolet

VEGFA:

Vascular endothelial growth factor-A

VLDL-C:

Very low-density lipoprotein- cholesterol

WT:

Wild-type

References

  1. Blanco-Ríos AK, Medina-Juarez LA, González-Aguilar GA, Gamez-Meza N (2013) Antioxidant activity of the phenolic and oily fractions of different sweet bell peppers. J Mex Chem Soc 57:137–143

    Google Scholar 

  2. Igbokwe GE, Aniakor GC, Anagonye CO (2013) Determination of β-carotene & vitamin C content of fresh green pepper (Capsicum annum), fresh red pepper (Capsicum annum) and fresh tomatoes (Solanum lycopersicum) fruits. Bioscientist 1:89–93

    Google Scholar 

  3. Kehie M, Kumaria S, Tandon P (2014) Manipulation of culture strategies to enhance capsaicin biosynthesis in suspension and immobilized cell cultures of Capsicum Chinense Jacq. cv. Naga King Chili. Bioprocess Biosyst Eng 37:1055–1063

    Article  CAS  Google Scholar 

  4. Oboh G, Rocha TBJ (2007) Distribution and antioxidant activity of polyphenols in ripe and unripe tree pepper (Capsicum pubescens). J Food Biochem 31:456–473

    Article  CAS  Google Scholar 

  5. Hwang JT, Kim SH, Park HS, Kwon DY, Kim MS (2013) Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem Biophys Res Commun 439(1):66–70. https://doi.org/10.1016/j.bbrc.2013.08.027.

    Article  Google Scholar 

  6. Büttow MW, Barbieri RL, Neitzke RS, Heiden G, Carvalho FIF (2010) Diversidade genética entre acessos de pimentas e pimentões da Embrapa Clima Temperado. Ciência Rural 40(6):1264–1269. https://doi.org/10.1590/S0103-84782010000600004

    Article  Google Scholar 

  7. Alvarez-Parrilla E, De LA, Amarowicz R, Shahidi F (2012) Protective effect of fresh and processed Jalapeño and Serrano peppers against food lipid and human LDL cholesterol oxidation. Food Chem 133(3):827–834. https://doi.org/10.1016/j. foodchem.2012.01.100

    Article  CAS  Google Scholar 

  8. Shetty AA, Magadum S, Managanvi K (2013) Vegetables as sources of antioxidants. J Food Nutr Disord 2(1):1–5. https://doi.org/10.4172/2324-9323.1000104. PMid:25328903

    Article  Google Scholar 

  9. Moraes LP, DaPaz MF, Sanjines-Argandoña EJ, Silva LR, Zago TD (2013) Compostos fenólicos e atividade antioxidante de molho de pimenta “Dedo-de-Moça” fermentado. Biochem Biotechnol Rep 1(2):33–38. Retrieved from http://www.uel.br/revistas/uel/index.php/bbr/article/view/14551/12349

    Article  Google Scholar 

  10. Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, Del Río LA, Corpas FJ, Palma JM (2013) Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14(5):9556–9580. https://doi.org/10.3390/ijms14059556. PMid:23644886

    Article  Google Scholar 

  11. Prasad NBC, Shrivastava R, Ravishankar GA (2005) Capsaicin as multifaceted drug from Capsicum spp. Evid Based Intern Med 2:147–166

    Article  Google Scholar 

  12. Kim YJ, Kim YAE, Yokozawa T (2009) Protection against oxidative stress, inflammation, and apoptosis of high-glucoseexposed proximal tubular epithelial cells by astaxanthin. J Agric Food Chem 57(19):8793–8797

    Article  CAS  Google Scholar 

  13. Fathima SN (2015) A systemic review on phytochemistry and pharmacological activities of Capsicum annuum. Int J Pharm Pharm Res 4(3):51–68

    Google Scholar 

  14. Bae H, Jayaprakasha GK, Jifon J, Patil BS (2012) Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chem 130(3):751–758

    Article  CAS  Google Scholar 

  15. Sgroppo SC, Pereyra MV (2009) Using mild heat treatment to improve the bioactive related compounds on fresh-cut green bell peppers. Int J Food Sci Technol 44:1793–1801

    Article  CAS  Google Scholar 

  16. Lu J, Papp LV, Fang J, Rodriguez NS, Zhivotovsky B, Holmgren A (2006) Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res 66(8):4410–4418

    Article  CAS  Google Scholar 

  17. Tonin FG, Jager AV, Micke GA, Farah JPS, Tavares MFM (2005) Optimization of the separation of flavonoids using solvent-modified micellar electrokinetic chromatography. Electrophoresis 26(17):3387–3396

    Article  CAS  Google Scholar 

  18. Wahyuni Y, Ballester AR, Sudarmonowati E, Bino RJ, Bovy AG (2011) Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72(11–12):1358–1370

    Google Scholar 

  19. Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J Agric Food Chem 53(5):1750–1756

    Article  CAS  Google Scholar 

  20. Kris-Etherton PM, Lefevre M, Beecher GR, Gross MD, Keen CI, Etherton TD (2004) Bioactive compounds in nutrition and health-research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoid on atherosclerosis. Annu Rev Nutr 24:511–538

    Article  CAS  Google Scholar 

  21. Howard LR, Talcott ST, Brenes CH, Villalon B (2000) Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum Species) as influenced by maturity. J Agric Food Chem 48:1713–1720

    Article  CAS  Google Scholar 

  22. Zhuang Y, Chen L, Sun L, Cao J (2012) Bioactive characteristics and antioxidant activities of nine peppers. J Funct Foods 4:331–338

    Article  CAS  Google Scholar 

  23. Kouassi KC, Koffi-Nevry R, Guillaume LY, Yéssé ZN, Koussémon M, Kablan T, Athanase KK (2012) Profiles of bioactive compounds of some pepper fruit (Capsicum L.) varieties grown in Côte D’ivoire. Innovat Rom Food Biotechnol 11:23–31

    CAS  Google Scholar 

  24. Shotorbani N, Jamei R, Heidari R (2013) Antioxidant activities of two sweet pepper Capsicum annuum L. varieties phenolics extracts and the effects of thermal treatment. Avicenna J Phytomed 3:25–34

    Google Scholar 

  25. Matsufuji H, Nakamuro H, Chino M, Mitsuharo T (1998) Antioxidant activity of capsanthin and the fatty acid esters in paprika (Capsicum annuum). J Agric Food Chem 46:3462–3472

    Article  Google Scholar 

  26. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Phys India 52:794–804

    CAS  Google Scholar 

  27. Ha SH, Kim JB, Park JS, Lee SW, Cho KJ (2007) A comparison of the carotenoid accumulation in capsicum varieties that show different ripening colours: deletion of the capsanthin–capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J Exp Bot 58:3135–3144

    Article  CAS  Google Scholar 

  28. Srinivas CH, Sai Pavan Kumar CHN, China RB, Jayathirtha RV, Naidu VG (2009) First stereoselective total synthesis and anticancer activity of new amide alkaloids of roots of pepper. Bioorg Med Chem Lett 19:5915–5918

    Article  CAS  Google Scholar 

  29. Qian K, Wang G, Cao R, Liu T, Qian G, Guan X, Guo Z, Xiao Y, Wang X (2016) Capsaicin suppresses cell proliferation, induces cell cycle arrest and ROS production in bladder cancer cells through FOXO3a-mediated pathways. Molecules 21(10):1406

    Google Scholar 

  30. Vendrely V, Peuchant E, Buscail E, Moranvillier I, Rousseau B, Bedel A, Brillac A, de Verneuil H, Moreau-Gaudry F, Dabernat S (2017) Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett 390:91. pii: S0304-3835(17)30017-4

    Article  CAS  Google Scholar 

  31. Hu YW, Ma X, Huang JL, Mao XR, Yang JY, Zhao JY, Li SF, Qiu YR, Yang J, Zheng L, Wang Q (2013) Dihydrocapsaicin attenuates plaque formation through a PPARγ/LXRα pathway in apoE−/− mice fed a high-fat/high-cholesterol diet. PLoS One 8(6):e66876. https://doi.org/10.1371/journal.pone.0066876

    Article  CAS  Google Scholar 

  32. Persson MS, Fu Y, Bhattacharya A, Goh SL, van Middelkoop M, Bierma-Zeinstra SM, Walsh D, Doherty M, Zhang WO, OA Trial Bank Consortium (2016) Relative efficacy of topical non-steroidal anti-inflammatory drugs and topical capsaicin in osteoarthritis: protocol for an individual patient data meta-analysis. Syst Rev 5(1):165. https://doi.org/10.1186/s13643-016-0348-8

    Article  Google Scholar 

  33. Lee JH, Kim C, Baek SH, Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Ahn KS (2016) Capsaezepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. https://doi.org/10.18632/oncotarget.10775

  34. Nishino H, Tokuda H, Satomi Y, Masuda M, Bu P, Onozuka M, Yamaguchi S, Okuda Y, Takayasu J, Tsuruta J et al (1999) Cancer prevention by carotenoids. Pure Appl Chem 71:2273–2278

    Article  CAS  Google Scholar 

  35. Vendrely V, Peuchant E, Buscail E, Moranvillier I, Rousseau B, Bedel A, Brillac A, de Verneuil H, Moreau-Gaudry F, Dabernat S (2017) Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett. https://doi.org/10.1016/j.canlet.2017.01.002. pii: S0304-3835(17)30017-4. Epub ahead of print

  36. Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, Gismondi A, Santoni G (2016) Capsaicin triggers autophagic cell survival which drives epithelial mesenchymal transition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget. https://doi.org/10.18632/oncotarget.10326. Epub ahead of print

  37. Bessler H, Djaldetti M (2017) Capsaicin modulates the immune cross talk between human Mononuclears and cells from two colon carcinoma lines. Nutr Cancer 69(1):14–20. https://doi.org/10.1080/01635581.2017.1247893. Epub 2016 Nov 30

    Article  CAS  Google Scholar 

  38. Liu T, Wang G, Tao H, Yang Z, Wang Y, Meng Z, Cao R, Xiao Y, Wang X, Zhou J (2016) Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK pathways in human renal carcinoma. BMC Cancer 16(1):790

    Article  Google Scholar 

  39. Wang F, Zhao J, Liu D, Zhao T, Lu Z, Zhu L, Cao L, Yang J, Jin J, Cai Y (2016) Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol Ther 17:1117

    Article  Google Scholar 

  40. Jin T, Wu H, Wang Y, Peng H (2016) Capsaicin induces immunogenic cell death in human osteosarcoma cells. Exp Ther Med 12(2):765–770

    Article  CAS  Google Scholar 

  41. Lin MH, Lee YH, Cheng HL, Chen HY, Jhuang FH, Chueh PJ (2016) Capsaicin inhibits multiple bladder cancer cell phenotypes by inhibiting tumor-associated NADH oxidase (tNOX) and Sirtuin1 (SIRT1). Molecules 21(7). https://doi.org/10.3390/Moleculesules21070849. pii: E849

  42. Lee JH, Kim C, Baek SH, Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Ahn KS (2016) Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. https://doi.org/10.18632/oncotarget.10775

  43. Sun F, Xiong S, Zhu Z (2016) Dietary capsaicin protects Cardiometabolic organs from dysfunction. Forum Nutr 8(5). https://doi.org/10.3390/nu8050174. pii: E174

  44. McCarty MF, DiNicolantonio JJ, O’Keefe JH (2015) Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart 2(1):e000262. https://doi.org/10.1136/openhrt-2015-000262.

    Article  Google Scholar 

  45. Duzhyy DE, Viatchenko-Karpinski VY, Khomula EV, Voitenko NV, Belan PV (2015) Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol Pain 11:29. https://doi.org/10.1186/s12990-015-0028-z.

    Article  Google Scholar 

  46. Yuan LJ, Qin Y, Wang L, Zeng Y, Chang H, Wang J, Wang B, Wan J, Chen SH, Zhang QY, Zhu JD, Zhou Y, Mi MT (2016) Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin Nutr 35(2):388–393. https://doi.org/10.1016/j.clnu.2015.02.011. Epub 2015 Mar 2

    Article  CAS  Google Scholar 

  47. Skrzypski M, Sassek M, Abdelmessih S, Mergler S, Grötzinger C, Metzke D, Wojciechowicz T, Nowak KW, Strowski MZ (2014) Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action. Cell Signal 26(1):41–48. https://doi.org/10.1016/j.cellsig.2013.09.014. Epub 2013 Sep 27

    Article  CAS  Google Scholar 

  48. Kang JH, Tsuyoshi G, Le Ngoc H, Kim HM, Tu TH, Noh HJ, Kim CS, Choe SY, Kawada T, Yoo H, Yu R (2011) Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice. J Med Food 14(3):310–315. https://doi.org/10.1089/jmf.2010.1367

    Article  CAS  Google Scholar 

  49. Zhao WX, Hong ZF, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM (2014) Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS One 10(5):e0121538. https://doi.org/10.1371/journal.pone.0121538. eCollection 2014

    Google Scholar 

  50. Baskaran P, Krishnan V, Ren J, Thyagarajan B (2016) Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol 173(15):2369–2389. https://doi.org/10.1111/bph.13514.

    Article  CAS  Google Scholar 

  51. Saito M (2015) Capsaicin and related food ingredients reducing body fat through the activation of TRP and Brown fat thermogenesis. Adv Food Nutr Res 76:1–28. https://doi.org/10.1016/bs.afnr.2015.07.002.

    Article  Google Scholar 

  52. Ibrahim M, Jang M, Park M, Gobianand K, You S, Yeon SH, Park S, Kim MJ, Lee HJ (2015) Capsaicin inhibits the adipogenic differentiation of bone marrow mesenchymal stem cells by regulating cell proliferation, apoptosis, oxidative and nitrosative stress. Food Funct 6(7):2165–2178. https://doi.org/10.1039/c4fo01069h.

    Article  CAS  Google Scholar 

  53. Chen J, Li L, Li Y, Liang X, Sun Q, Yu H, Zhong J, Ni Y, Chen J, Zhao Z, Gao P, Wang B, Liu D, Zhu Z, Yan Z (2015) Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ influx. Cardiovasc Diabetol 14:22. https://doi.org/10.1186/s12933-015-0183-6.

    Article  Google Scholar 

  54. Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM (2015) Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS One 10(5):e0121538. https://doi.org/10.1371/journal.pone.0121538. eCollection 2015

    Article  Google Scholar 

  55. Tan S, Gao B, Tao Y, Guo J, Su ZQ (2014) Antiobese effects of capsaicin-chitosan microsphere (CCMS) in obese rats induced by high fat diet. J Agric Food Chem 62(8):1866–1874. https://doi.org/10.1021/jf4040628

    Article  CAS  Google Scholar 

  56. Lee GR, Shin MK, Yoon DJ, Kim AR, Yu R, Park NH, Han IS (2013) Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice. Obesity (Silver Spring) 21(1):115–122. https://doi.org/10.1002/oby.20246.

    Article  Google Scholar 

  57. Nicholas S, Yuan SY, Brookes SJ, Spencer NJ, Zagorodnyuk VP (2017) Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder. Br J Pharmacol 174(2):126–138

    Google Scholar 

  58. Pyun CW, Kim JH, Han KH, Hong GE, Lee CH (2014) In vivo protective effects of dietary curcumin and capsaicin against alcohol-induced oxidative stress. Biofactors 40(5):494–500. https://doi.org/10.1002/biof.1172.

    Article  CAS  Google Scholar 

  59. Jung SH, Kim HJ, Oh GS, Shen A, Lee S, Choe SK, Park R, So HS (2014) Capsaicin ameliorates cisplatin-induced renal injury through induction of heme oxygenase-1. Mol Cells 37(3):234–240. https://doi.org/10.14348/molcells.2014.2322

    Article  Google Scholar 

  60. Pramanik KC, Boreddy SR, Srivastava SK (2011) Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6(5):e20151. https://doi.org/10.1371/journal.pone.0020151.

    Article  CAS  Google Scholar 

  61. Gupta RS, Dixit VP, Dobhal MP (2002) Hypocholesterolaemic effect of the oleoresin of Capsicum annum L. in gerbils (Meriones hurrianae Jerdon). Phytother Res 16:273–275

    Article  CAS  Google Scholar 

  62. Sambaiah K, Satyanarayana MN (1980) Hypocholesterolemic effect of red pepper & capsaicin. Indian J Exp Biol 18:898–899

    CAS  Google Scholar 

  63. Kim JS, Ha Y, Kim S, Lee SJ, Ahn J (2017) Red paprika (Capsicum annuum L.) and its main carotenoid capsanthin ameliorate impaired lipid metabolism in the liver and adipose tissue of high-fat diet-induced obese mice. J Funct Foods 31:131–140

    Article  CAS  Google Scholar 

  64. Kumar P, Chand S, Chandra P, Maurya PK (2015) Influence of dietary capsaicin on Redox status in red blood cells during human aging. Adv Pharm Bull 5(4):583–586. https://doi.org/10.15171/apb.2015.078

    Article  Google Scholar 

  65. Jiang X, Jia LW, Li XH, Cheng XS, Xie JZ, Ma ZW, Xu WJ, Liu Y, Yao Y, Du LL, Zhou XW (2013) Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J Alzheimers Dis 35(1):91–105. https://doi.org/10.3233/JAD-121837.

    CAS  Google Scholar 

  66. Lee JG, Yon JM, Lin C, Jung AY, Jung KY, Nam SY (2012) Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neurons. Food Chem Toxicol 50(11):3877–3885. https://doi.org/10.1016/j.fct.2012.08.040.

    Article  CAS  Google Scholar 

  67. Lee TH, Lee JG, Yon JM, Oh KW, Baek IJ, Nahm SS, Lee BJ, Yun YW, Nam SY (2011) Capsaicin prevents kainic acid-induced epileptogenesis in mice. Neurochem Int 58(6):634–640. https://doi.org/10.1016/j.neuint.2011.01.027.

    Article  CAS  Google Scholar 

  68. Bert J, Mahowald ML, Frizelle S, Dorman CW, Funkenbusch SC and Krug HE (2016). The effect of treatment with Resiniferatoxin and capsaicin on dynamic weight bearing measures and evoked pain responses in a chronic inflammatory arthritis murine model. Intern Med Rev (Wash DC) 16(6). pii: 89

    Google Scholar 

  69. Walker J, Ley JP, Schwerzler J, Lieder B, Beltran L, Ziemba PM, Hatt H, Hans J, Widder S, Krammer GE, Somoza V (2017) Nonivamide, a capsaicin analogue, exhibits anti-inflammatory properties in peripheral blood mononuclear cells and U-937 macrophages. Mol Nutr Food Res 1600474

    Google Scholar 

  70. Tang J, Luo K, Li Y, Chen Q, Tang D, Wang D, Xiao J (2015) Induced inflammatory cytokine production by upregulation of LXRα. Int Immunopharmacol 28(1):264–269. https://doi.org/10.1016/j.intimp.2015.06.007.

    Article  CAS  Google Scholar 

  71. Foster HE, Lake AG (2014) Use of Vanilloids in urologic disorders. In: Abdel-Salam EOM (ed) Capsaicin as a therapeutic molecules. Springer, Basel, pp 307–317

    Chapter  Google Scholar 

  72. Haab F (2014) Chapter 1: the conditions of neurogenic detrusor overactivity and overactive bladder. Neurourol Urodyn 33(Suppl S3):S2–S5

    Article  Google Scholar 

  73. Wouters AT, Casagrande RA, Wouters F, Watanabe TT, Boabaid FM, Cruz CE, Driemeier D (2013) An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products. J Vet Diagn Investig 25:282–287

    Article  Google Scholar 

  74. Wadie BS (2015) Management of refractory OAB in the non-neurogenic patient. Curr Urol Rep 15:438

    Article  Google Scholar 

  75. Yamaguchi O, Nishizawa O, Takeda M, Yokoyama O, Homma Y, Kakizaki H, Obara K, Gotoh M, Igawa Y, Seki N (2009) Clinical guidelines for overactive bladder. Int J Urol 16:126–142

    Article  CAS  Google Scholar 

  76. MacDonald R, Monga M, Fink HA, Wilt TJ (2008) Neurotoxin treatments for urinary incontinence in subjects with spinal cord injury or multiple sclerosis: a systematic review of effectiveness and adverse effects. J Spinal Cord Med 31:157–165

    Article  Google Scholar 

  77. Everaerts W, Gevaert T, Nilius B, De Ridder D (2008) On the origin of bladder sensing: trips in urology. Neurourol Urodyn 27:264–273

    Article  CAS  Google Scholar 

  78. Li M, Sun Y, Simard JM, Chai TC (2011) Increased transient receptor potential vanilloid type 1 (TRPV1) signaling in idiopathic overactive bladder urothelial cells. Neurourol Urodyn 30:606–611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Functional and Nutraceutical Food Research Section, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan. The project was partially supported by Higher Education Commission, Pakistan, under Pak-US Science and Technology Cooperation Program Phase IV with a project entitled “Establishment of Functional and Nutraceutical Food Research Section at the National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Ansar Rasul Suleria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Imran, M., Butt, M.S., Suleria, H.A.R. (2018). Capsicum annuum Bioactive Compounds: Health Promotion Perspectives. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics