Skip to main content

Multifunctional Bioactives for Cancer Therapy: Emerging Nanosized Delivery Systems

  • Chapter
  • First Online:
Book cover Food Bioactives

Abstract

Nanomaterials will potentially play an important role in cancer treatment and diagnosis. In recent years, researchers have developed targeted and biocompatible nanoparticles loaded with bioactives for cancer imaging applications. The rapid diagnosis and treatment using specific nano-based delivery system could contribute to the implementation of an early and targeted treatment of cancer in an initial stage of disease. Moreover, nanocarriers have significantly improved the therapeutic regimens, by increasing bioactive bioavailability, target site specificity, patient compliance, and cost-effectiveness, by assuring the sustained and controlled release, and by reducing the toxicity and side effects. Different bioactives isolated from plants interfere with specific stages of carcinogenesis. This chapter presents the novel and important directions concerning the application of bioactives from plants through nanotechnology for the improvement of diagnosis and drug delivery , with a particular focus on cancer therapy .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P (2005) Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 16:1503–1511. doi:10.1021/bc050217o

    Article  CAS  Google Scholar 

  • Anitha A, Divya Rani VV, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78(4):672–677. doi:10.1016/j.carbpol.2009.05.028

    Article  CAS  Google Scholar 

  • Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91:2076–2080. doi:10.1073/pnas.91.6.2076

    Article  CAS  Google Scholar 

  • Borchard G (2001) Chitosans for gene delivery. Adv Drug Deliv Rev 52(2):145–150

    Article  CAS  Google Scholar 

  • Bu L, Gan LC, Guo XQ, Chen FZ, Song Q, Qi Z, Gou XJ, Hou SX, Yao Q (2013) Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharm 452(1–2):355–362. doi:10.1016/j.ijpharm.2013.05.007

    Article  CAS  Google Scholar 

  • Chang PY, Peng SF, Lee CY, Lu CC, Tsai SC, Shieh TM, Wu TS, Tu MG, Chen MY, Yang JS (2013) Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol 43(4):1141–1150. doi:10.3892/ijo.2013.2050

    CAS  Google Scholar 

  • Chen MY, Hoffer A, Morrison PF, Hamilton JF, Hughes J, Schlageter KS, Lee J, Kelly BR, Oldfield EH (2005) Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurg 103:311–319. doi:10.3171/jns.2005.103.2.0311

    Article  Google Scholar 

  • Chen J, Dai WT, He ZM, Gao L, Huang X, Gong JM, Xing HY, Chen WD (2013) Fabrication and evaluation of curcumin-loaded nanoparticles based on solid lipid as a new type of colloidal drug delivery system. Indian J Pharm Sci 75(2):178–184

    CAS  Google Scholar 

  • Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876. doi:10.1016/j.biomaterials.2006.09.047

    Article  CAS  Google Scholar 

  • Cho CS, Cho KY, Park IK, Kim SH, Sasagawa T, Uchiyama M, Akaike T (2001) Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly(l-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J Controlled Release Off J Controlled Release Soc 77(1–2):7–15

    Article  CAS  Google Scholar 

  • Choi SW, Kim JH (2007) Design of surface-modified poly(d, l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Controlled Release Off J Controlled Release Soc 122(1):24–30. doi:10.1016/j.jconrel.2007.06.003

    Article  CAS  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109(7):3012–3043. doi:10.1021/cr900019j

    Article  CAS  Google Scholar 

  • Dai XZ, Yin HT, Sun LF, Hu X, Zhou C, Zhou Y, Zhang W, Huang XE, Li XC (2013) Potential therapeutic efficacy of curcumin in liver cancer. Asian Pac J Cancer Prevent APJCP 14(6):3855–3859

    Article  Google Scholar 

  • Deng C, Tian H, Zhang P, Sun J, Chen X, Jing X (2006) Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-glutamic acid) triblock copolymer. Biomacromolecules 7:590–596. doi:10.1021/bm050678c

    Article  CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia S (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. doi:10.1021/nl0347334

    Article  CAS  Google Scholar 

  • Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, Jayakumar R (2010a) Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym 80(3):833–838. doi:10.1016/j.carbpol.2009.12.040

    Article  CAS  Google Scholar 

  • Dev A, Mohan JC, Sreeja V, Tamura H, Patzke GR, Hussain F, Weyeneth S, Nair SV, Jayakumar R (2010b) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79(4):1073–1079. doi:10.1016/j.carbpol.2009.10.038

    Article  CAS  Google Scholar 

  • Dilnawaz F, Sahoo SK (2013) Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm Off J [Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV] 85(3 Pt A):452–462. doi:10.1016/j.ejpb.2013.07.013

  • Dora CL, Silva LF, Putaux JL, Nishiyama Y, Pignot-Paintrand I, Borsali R, Lemos-Senna E (2012) Poly(ethylene glycol) hydroxystearate-based nanosized emulsions: effect of surfactant concentration on their formation and ability to solubilize quercetin. J Biomed Nanotechnol 8(2):202–210

    Article  CAS  Google Scholar 

  • Dreis S, Rothweiler F, Michaelis M, Cinatl J Jr, Kreuter J, Langer K (2007) Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 341(1–2):207–214. doi:10.1016/j.ijpharm.2007.03.036

    Article  CAS  Google Scholar 

  • Du W (2003) Towards new anticancer drugs: a decade of advances in synthesis of camptothecins and related alkaloids. Tetrahedron 59(44):8649–8687. doi:10.1016/S0040-4020(03)01203-1

    Article  CAS  Google Scholar 

  • Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(d, l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22(19):2406–2412. doi:10.1016/j.vaccine.2003.12.032

    Article  CAS  Google Scholar 

  • Epstein J, Sanderson IR, Macdonald TT (2010) Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr 103(11):1545–1557. doi:10.1017/s0007114509993667

    Article  CAS  Google Scholar 

  • Fan GH, Wang ZM, Yang X, Xu LP, Qin Q, Zhang C, Ma JX, Cheng HY, Sun XC (2014) Resveratrol inhibits oesophageal adenocarcinoma cell proliferation via AMP-activated protein kinase signaling. Asian Pac J Cancer Prev APJCP 15(2):677–682

    Article  Google Scholar 

  • Fang JY, Li ZH, Li Q, Huang WS, Kang L, Wang JP (2012) Resveratrol affects protein kinase C activity and promotes apoptosis in human colon carcinoma cells. Asian Pac J Cancer Prev APJCP 13(12):6017–6022

    Article  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672. doi:10.1158/0008-5472.can-04-2550

    Article  CAS  Google Scholar 

  • Feng R, Song Z, Zhai G (2012) Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int J Nanomed 7:4089–4098. doi:10.2147/ijn.s33607

    Article  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171. doi:10.1038/nrc1566

    Article  CAS  Google Scholar 

  • Figueiro F, Bernardi A, Frozza RL, Terroso T, Zanotto-Filho A, Jandrey EH, Moreira JC, Salbego CG, Edelweiss MI, Pohlmann AR, Guterres SS, Battastini AM (2013) Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol 9(3):516–526

    Article  CAS  Google Scholar 

  • Fung LK, Saltzman WM (1997) Polymeric implants for cancer chemotherapy. Adv Drug Deliv Rev 26:209–230. doi:10.1016/S0169-409X(97)00036-7

    Article  CAS  Google Scholar 

  • Fung LK, Shin M, Tyler B, Brem H, Saltzman WM (1996) Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 13:671–682. doi:10.1023/A:1016083113123

    Article  CAS  Google Scholar 

  • Gangwar RK, Tomar GB, Dhumale VA, Zinjarde S, Sharma RB, Datar S (2013) Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J Agric Food Chem 61(40):9632–9637. doi:10.1021/jf402894x

    CAS  Google Scholar 

  • Gao Z, Lukyanov AN, Singhal A, Torchilin VP (2002) Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett 2(9):979–982. doi:10.1021/nl025604a

    Article  CAS  Google Scholar 

  • Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, Huang N, Qian Z, Wei Y (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4(22):7021–7030. doi:10.1039/c2nr32181e

    Article  CAS  Google Scholar 

  • Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V (2011) Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J Drug Target 19:837–845. doi:10.3109/1061186X.2011.589435

    Article  CAS  Google Scholar 

  • Gordaliza M (2007) Natural products as leads to anticancer drugs. Clin Transl Oncol 9(12):767–776 Official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico

    Article  CAS  Google Scholar 

  • Graham JG, Quinn ML, Fabricant DS, Farnsworth NR (2000) Plants used against cancer—an extension of the work of Jonathan Hartwell. J Ethnopharmacol 73(3):347–377

    Article  CAS  Google Scholar 

  • Gunduz O, Oktarc FN (2014) Preparation of scaffolds and new biomaterials for health care industries. Bioceramics Devel Appl 4:1–3. doi:10.4172/2090-5025.1000e104

    Google Scholar 

  • Guri A, Gulseren I, Corredig M (2013) Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells. Food Funct 4(9):1410–1419. doi:10.1039/c3fo60180c

    Article  CAS  Google Scholar 

  • Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Smyth HDC (2013) Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. BioMed Res Int 2013:9. doi:10.1155/2013/724763

    Article  CAS  Google Scholar 

  • Harakeh S, Diab-Assaf M, Azar R, Hassan HM, Tayeb S, Abou-El-Ardat K, Damanhouri GA, Qadri I, Abuzenadah A, Chaudhary A, Kumosani T, Niedzwiecki A, Rath M, Yacoub H, Azhar E, Barbour E (2014) Epigallocatechin-3-gallate inhibits tax-dependent activation of nuclear factor kappa B and of matrix metalloproteinase 9 in human T-cell lymphotropic virus-1 positive leukemia cells. Asian Pac J Cancer Prev APJCP 15(3):1219–1225

    Article  Google Scholar 

  • Higuchi Y, Oka M, Kawakami S, Hashida M (2008) Mannosylated semiconductor quantum dots for the labelling of macropages. J Controlled Release 125:131–136. doi:10.1016/j.jconrel.2007.10.007

    Article  CAS  Google Scholar 

  • Hu B, Ting Y, Yang X, Tang W, Zeng X, Huang Q (2012) Nanochemoprevention by encapsulation of (-)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem Commun 48(18):2421–2423. doi:10.1039/c2cc17295j

  • Huang Q, Wang L, Lu W (2013) Evolution in medicinal chemistry of E-ring-modified Camptothecin analogs as anticancer agents. Eur J Med Chem 63:746–757. doi:10.1016/j.ejmech.2013.01.058

    Article  CAS  Google Scholar 

  • Jain AK, Thanki K, Jain S (2013) Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol Pharm 10(9):3459–3474. doi:10.1021/mp400311j

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62(2):142–158. doi:10.1016/j.carbpol.2005.07.017

    Article  CAS  Google Scholar 

  • Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40(3):175–181. doi:10.1016/j.ijbiomac.2006.06.021

    Article  CAS  Google Scholar 

  • Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N (2010a) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym 79(1):1–8. doi:10.1016/j.carbpol.2009.08.026

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010b) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150. doi:10.1016/j.biotechadv.2009.11.001

    Article  CAS  Google Scholar 

  • Jayasree A, Sasidharan S, Koyakutty M, Nair S, Menon D (2011) Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydr Polym 85:37–43. doi:10.1016/j.carbpol.2011.01.034

    Article  CAS  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  Google Scholar 

  • Karthikeyan S, Rajendra Prasad N, Ganamani A, Balamurugan E (2013) Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed Prev Nutr 3(1):64–73. doi:10.1016/j.bionut.2012.10.009

    Article  Google Scholar 

  • Kawasaki ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 1:101–109. doi:10.1016/j.nano.2005.03.002

    Article  CAS  Google Scholar 

  • Khan N, Bharali DJ, Adhami VM, Siddiqui IA, Cui H, Shabana SM, Mousa SA, Mukhtar H (2014) Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35(2):415–423. doi:10.1093/carcin/bgt321

    Article  CAS  Google Scholar 

  • Kingston DG (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72(3):507–515. doi:10.1021/np800568j

    Article  CAS  Google Scholar 

  • Kreuter J (2004) Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 4:484–488. doi:10.1166/jnn.2003.077

    Article  CAS  Google Scholar 

  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174. doi:10.1016/0006-8993(95)00023-J

    Article  CAS  Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324. doi:10.1158/0008-5472.can-04-3921

    Article  CAS  Google Scholar 

  • Kulisic-Bilusic T, Schmoller I, Schnabele K, Siracusa L, Ruberto G (2012) The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem 132(1):261–267. doi:10.1016/j.foodchem.2011.10.074

    Article  CAS  Google Scholar 

  • Kulkarni SA, Feng SS (2011) Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood–brain barrier. Nanomed (Lond.) 6:377–394. doi:10.2217/nnm.10.131

    Article  CAS  Google Scholar 

  • Kumar SS, Surianarayanan M, Vijayaraghavan R, Mandal AB, MacFarlane DR (2014) Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid–in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur J Pharm Sci Off J Eur Fed Pharm Sci 51:34–44. doi:10.1016/j.ejps.2013.08.036

    CAS  Google Scholar 

  • Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M, Croteau D, Pedain C, Leland P, Husain SR, Joshi BH, Puri RK (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro-Oncology 12:871–881. doi:10.1093/neuonc/nop054

    Article  CAS  Google Scholar 

  • Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Controlled Release Off J Controlled Release Soc 91(1–2):103–113

    Article  CAS  Google Scholar 

  • Lee MK, Lim SJ, Kim CK (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28(12):2137–2146. doi:10.1016/j.biomaterials.2007.01.014

    Article  CAS  Google Scholar 

  • Li Y, Zhang S, Geng JX, Hu XY (2013) Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac J Cancer Prev APJCP 14(8):4599–4602

    Article  Google Scholar 

  • Liu J, Zeng F, Allen C (2005) Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J Controlled Release Off J Controlled Release Soc 103(2):481–497. doi:10.1016/j.jconrel.2004.12.013

    Article  CAS  Google Scholar 

  • Liu M, Li H, Luo G, Liu Q, Wang Y (2008) Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharmacal Res 31:547–554. doi:10.1007/s12272-001-1191-8

    Article  CAS  Google Scholar 

  • Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, Nair SV, Jayakumar R (2009) Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44(1):1–5. doi:10.1016/j.ijbiomac.2008.09.013

    Article  CAS  Google Scholar 

  • Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21(2):807–813. doi:10.1007/s10856-009-3877-z

    Article  CAS  Google Scholar 

  • Manzoor K, Johny S, Deepa T, Sonali S, Menon D, Nair SV (2009) Bioconjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology 20:13. doi:10.1088/0957-4484/20/6/065102

    Article  CAS  Google Scholar 

  • Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80(2):442–448. doi:10.1016/j.carbpol.2009.11.047

    Article  CAS  Google Scholar 

  • Messerschmidt SK, Musyanovych A, Altvater M, Scheurich P, Pfizenmaier K, Landfester K, Kontermann RE (2009) Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. J Controlled Release Off J Controlled Release Soc 137(1):69–77. doi:10.1016/j.jconrel.2009.03.010

    Article  CAS  Google Scholar 

  • Michaud-Levesque J, Bousquet-Gagnon N, Beliveau R (2012) Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp Cell Res 318(8):925–935. doi:10.1016/j.yexcr.2012.02.017

    Article  CAS  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58:1423–1430. doi:10.1248/cpb.58.1423

    Article  CAS  Google Scholar 

  • Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51(9):2589–2599. doi:10.1021/jm0704090

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335. doi:10.1021/np200906s

    Article  CAS  Google Scholar 

  • Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288. doi:10.1146/annurev.bioeng.9.060906.152025

    Article  CAS  Google Scholar 

  • Oh KT, Oh YT, Oh NM, Kim K, Lee DH, Lee ES (2009) A smart flower-like polymeric micelle for pH-triggered anticancer drug release. Int J Pharm 375(1–2):163–169. doi:10.1016/j.ijpharm.2009.04.005

    Article  CAS  Google Scholar 

  • Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2(1):108–119

    Article  Google Scholar 

  • Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30(5):859–866. doi:10.1016/j.biomaterials.2008.09.056

    Article  CAS  Google Scholar 

  • Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydr Polym 79(2):284–289. doi:10.1016/j.carbpol.2009.08.001

    Article  CAS  Google Scholar 

  • Pool H, Mendoza S, Xiao H, McClements DJ (2013) Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: impact of physical form on quercetin bioaccessibility. Food Funct 4(1):162–174. doi:10.1039/c2fo30042g

    Article  CAS  Google Scholar 

  • Popescu RC, Fufă MOM, Grumezescu AM (2015) Metal-based nanosystems for diagnosis. Rom J Morphol Embryol 56(2 Suppl):635–649

    Google Scholar 

  • Pratheeshkumar P, Sreekala C, Zhang Z, Budhraja A, Ding S, Son YO, Wang X, Hitron A, Hyun-Jung K, Wang L, Lee JC, Shi X (2012) Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anti-Cancer Agents Med Chem 12(10):1159–1184

    Article  CAS  Google Scholar 

  • Rachmawati H, Edityaningrum CA, Mauludin R (2013) Molecular inclusion complex of curcumin-beta-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 14(4):1303–1312. doi:10.1208/s12249-013-0023-5

    Article  CAS  Google Scholar 

  • Rao KS, Reddy MK, Horning JL, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29:4429–4438. doi:10.1016/j.biomaterials.2008.08.004

    Article  CAS  Google Scholar 

  • Ray L, Kumar P, Gupta KC (2013) The activity against Ehrlich’s ascites tumors of doxorubicin contained in self assembled, cell receptor targeted nanoparticle with simultaneous oral delivery of the green tea polyphenol epigallocatechin-3-gallate. Biomaterials 34(12):3064–3076. doi:10.1016/j.biomaterials.2012.12.044

    Article  CAS  Google Scholar 

  • Roy M, Mukherjee S (2014) Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev APJCP 15(3):1403–1410

    Article  Google Scholar 

  • Saito R, Krauze MT, Noble CO, Drummond DC, Kirpotin DB, Berger MS, Park JW, Bankiewicz KS (2006) Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro-Oncology 8:205–214. doi:10.1215/15228517-2006-001

    Article  CAS  Google Scholar 

  • Salehi P, Makhoul G, Roy R, Malhotra M, Mood ZA, Daniel SJ (2013) Curcumin loaded NIPAAM/VP/PEG-A nanoparticles: physicochemical and chemopreventive properties. J Biomater Sci Polym Ed 24(5):574–588. doi:10.1080/09205063.2012.700111

    Article  CAS  Google Scholar 

  • Sanna V, Roggio AM, Siliani S, Piccinini M, Marceddu S, Mariani A, Sechi M (2012) Development of novel cationic chitosan-and anionic alginate-coated poly(d, l-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. Int J Nanomed 7:5501–5516. doi:10.2147/ijn.s36684

    CAS  Google Scholar 

  • Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013) Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(d, l-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm 10(10):3871–3881. doi:10.1021/mp400342f

    Article  CAS  Google Scholar 

  • Sawyer AJ, Saucier-Sawyer JK, Booth CJ, Liu J, Patel T, Piepmeier JM, Saltzman WM (2011) Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Transl Res 1:34–42. doi:10.1007/s13346-010-0001-3

    Article  CAS  Google Scholar 

  • Saxena V, Hussain MD (2013) Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J Biomed Nanotechnol 9(7):1146–1154

    Article  CAS  Google Scholar 

  • Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19):e149. doi:10.1093/nar/gnh140

    Article  Google Scholar 

  • Schnyder A, Krahenbuhl S, Drewe J, Huwyler J (2005) Targeting of daunomycin using biotinylated immunoliposomes: pharmacokinetics, tissue distribution and in vitro pharmacological effects. J Drug Target 13(5):325–335. doi:10.1080/10611860500206674

    Article  CAS  Google Scholar 

  • Schroeder U, Schroeder H, Sabel BA (2000) Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after IV injections to mice. Life Sci 66:495–502

    Article  CAS  Google Scholar 

  • Shah U, Shah R, Acharya S, Acharya N (2013) Novel anticancer agents from plant sources. Chin J Nat Med 11(1):16–23. doi:10.1016/S1875-5364(13)60002-3

    Article  CAS  Google Scholar 

  • Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77(4):863–869. doi:10.1016/j.carbpol.2009.03.009

    Article  CAS  Google Scholar 

  • Sharma C, Nusri Qel A, Begum S, Javed E, Rizvi TA, Hussain A (2012) (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev APJCP 13(9):4815–4822

    Article  Google Scholar 

  • Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR, Nune SK, Casteel SW, Smith CJ, Vimal J, Boote E, Robertson JD, Kan P, Engelbrecht H, Watkinson LD, Carmack TL, Lever JR, Cutler CS, Caldwell C, Kannan R, Katti KV (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci USA 109(31):12426–12431. doi:10.1073/pnas.1121174109

    Article  CAS  Google Scholar 

  • Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69:1712–1716. doi:10.1158/0008-5472.CAN-08-3978

    Article  CAS  Google Scholar 

  • Stakleff KS, Sloan T, Blanco D, Marcanthony S, Booth TD, Bishayee A (2012) Resveratrol exerts differential effects in vitro and in vivo against ovarian cancer cells. Asian Pac J Cancer Prev APJCP 13(4):1333–1340

    Article  Google Scholar 

  • Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y (2013) Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B 111:367–375. doi:10.1016/j.colsurfb.2013.06.032

    Article  CAS  Google Scholar 

  • Tang JC, Shi HS, Wan LQ, Wang YS, Wei YQ (2013) Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model. Asian Pac J Cancer Prev APJCP 14(4):2307–2310

    Article  Google Scholar 

  • Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA 103:5567–5572. doi:10.1073/pnas.0509425103

    Article  CAS  Google Scholar 

  • Trapani A, De Giglio E, Cafagna D, Denora N, Agrimi G, Cassano T, Gaetani S, Cuomo V, Trapani G (2011) Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 419:296–307. doi:10.1016/j.ijpharm.2011.07.036

    Article  CAS  Google Scholar 

  • Turkoglu OF, Eroglu H, Gurcan O, Bodur E, Sargon MF, Oner L, Beskonakli E (2010) Local administration of chitosan microspheres after traumatic brain injury in rats: a new challenge for cyclosporine-a delivery. Br J Neurosurg 24:578–583. doi:10.3109/02688697.2010.487126

    Article  Google Scholar 

  • Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12(9):1265–1271. doi:10.1002/mabi.201200121

    Article  CAS  Google Scholar 

  • Vinogradov SV, Batrakova EV, Kabanov AV (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15(1):50–60. doi:10.1021/bc034164r

    Article  CAS  Google Scholar 

  • von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BYS (2016) Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. doi:10.1016/j.tibtech.2016.07.006

  • Wall ME, Wani MC (1995) Camptothecin and taxol: discovery to clinic–thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 55(4):753–760

    CAS  Google Scholar 

  • Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. the isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1,2. J Am Chem Soc 88(16):3888–3890. doi:10.1021/ja00968a057

    Article  CAS  Google Scholar 

  • Wang J, Mongayt D, Torchilin VP (2005) Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target 13(1):73–80. doi:10.1080/10611860400011935

    Article  CAS  Google Scholar 

  • Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70:735–740. doi:10.1016/j.ejpb.2008.07.005

    Article  CAS  Google Scholar 

  • Wang G, Wang JJ, Yang GY, Du SM, Zeng N, Li DS, Li RM, Chen JY, Feng JB, Yuan SH, Ye F (2012) Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomed 7:271–280. doi:10.2147/ijn.s26935

    Article  CAS  Google Scholar 

  • Wang G, Wang JJ, Chen XL, Du SM, Li DS, Pei ZJ, Lan H, Wu LB (2013) The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis 4:e746. doi:10.1038/cddis.2013.242

    Article  CAS  Google Scholar 

  • Wong HL, Rauth AM, Bendayan R, Wu XY (2007) In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm [Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV] 65(3):300–308. doi:10.1016/j.ejpb.2006.10.022

    Article  CAS  Google Scholar 

  • Wosikowski K, Biedermann E, Rattel B, Breiter N, Jank P, Loser R, Jansen G, Peters GJ (2003) In vitro and in vivo antitumor activity of methotrexate conjugated to human serum albumin in human cancer cells. Clin Cancer Res Off J Am Assoc Cancer Res 9(5):1917–1926

    CAS  Google Scholar 

  • Wu C-F, Yang J-Y, Wang F, Wang X-X (2013a) Resveratrol: botanical origin, pharmacological activity and applications. Chin J Nat Med 11(1):1–15. doi:10.1016/S1875-5364(13)60001-1

    Article  CAS  Google Scholar 

  • Wu S, Sun K, Wang X, Wang D, Wan X, Zhang J (2013b) Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. J Agric Food Chem 61(30):7268–7275. doi:10.1021/jf4000083

    Article  CAS  Google Scholar 

  • Yin HT, Tian QZ, Guan L, Zhou Y, Huang XE, Zhang H (2013) In vitro and in vivo evaluation of the antitumor efficiency of resveratrol against lung cancer. Asian Pac J Cancer Prev APJCP 14(3):1703–1706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, D., Nijhawan, M., Puri, M. (2017). Multifunctional Bioactives for Cancer Therapy: Emerging Nanosized Delivery Systems. In: Puri, M. (eds) Food Bioactives. Springer, Cham. https://doi.org/10.1007/978-3-319-51639-4_12

Download citation

Publish with us

Policies and ethics