Skip to main content

Estimation of Dislocation Density in Metals from Hardness Measurements

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

A novel methodology to estimate the dislocation density in cubic metals by using microhardness measurements has been established. The proposed methodology is based on the Indention Size Effect (ISE) phenomena and strengthening mechanisms of materials at the micro-level. The methodology was validated by using experimental data of lean duplex stainless steel 2101 alloy. The results are confirmed via X-ray diffraction measurements and they substantiate that the proposed approach can be used as a general method to estimate dislocation density in metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Miyajima Y, Okubo S, Abe H, Okumura H, Fujii T, Onaka S, Kato M (2015) Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing. Mater Charact 104:101–106. doi:10.1016/j.matchar.2015.04.009

    Article  Google Scholar 

  2. Shintani T, Murata Y (2011) Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater 59:4314–4322. doi:10.1016/j.actamat.2011.03.055

    Article  Google Scholar 

  3. Kishor R, Sahu L, Dutta K, Mondal AK (2014) Assessment of dislocation density in asymmetrically cyclic loaded non-conventional stainless steel using X-ray diffraction profile analysis. Mater Sci Eng A 598:299–303. doi:10.1016/j.msea.2014.01.043

  4. Arsenlis A (1999) Crystallographic aspects of geometrically- necessary and statistically-stored dislocation density. Acta Metall 47:1597–1611. doi:10.1016/S1359-6454(99)00020-8

    Google Scholar 

  5. Rodríguez R, Gutierrez I (2003) Correlation between nanoindentation and tensile properties influence of the indentation size effect. Mater Sci Eng A 361:377–384. doi:10.1016/S0921-5093(03)00563-X

    Article  Google Scholar 

  6. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solid 46:411–425. doi:10.1016/S0022-5096(97)00086-0

    Article  Google Scholar 

  7. Durst K, Franke O, Böhner A, Göken M (2007) Indentation size effect in Ni-Fe solid solutions. Acta Mater 55:6825–6833. doi:10.1016/j.actamat.2007.08.044

  8. ISO, 14577 (2015) Metallic materials—instrumented indentation test for hardness and materials parameters

    Google Scholar 

  9. Totten GE, Xie L, Funatani K (2004) Handbook of mechanical alloy design. Marcel Dekker, 2004

    Google Scholar 

  10. Durst K, Backes B, Franke O, Göken M (2006) Indentation size effect in metallic materials: modeling strength from pop-into macroscopic hardness using geometrically necessary dislocations. Acta Mater 54:2547–2555. doi:10.1016/j.actamat.2006.01.036

    Article  Google Scholar 

  11. Yang B, Vehoff H (2007) Dependence of nanohardness upon indentation size and grain size—a local examination of the interaction between dislocations and grain boundaries. Acta Mater 55:849–856. doi:10.1016/j.actamat.2006.09.004

    Article  Google Scholar 

  12. Feng G, Nix WD (2004) Indentation size effect in MgO. Scr Mater 51:599–603. doi:10.1016/j.scriptamat.2004.05.034

    Article  Google Scholar 

  13. Qiu X, Huang Y, Nix WD, Hwang KC, Gao H (2001) Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Mater 49:3949–3958. doi:10.1016/S1359-6454(01)00299-3

    Article  Google Scholar 

  14. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. doi:10.1557/JMR.1992.1564

    Article  Google Scholar 

  15. Strubbia R, Hereñú S, Alvarez-Armas I, Krupp U (2014) Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101. Mater Sci Eng A 615:169–174. doi:10.1016/j.msea.2014.07.076

    Article  Google Scholar 

  16. Ribárik G (2001) MWP-fit: a program for multiple whole profile fitting of diffraction profiles by ab-initio theoretical functions. J Appl Crystallogr 34:669–676. doi:10.1107/S0021889801011451

    Article  Google Scholar 

  17. Ungár T, Borbély A (1996) The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69:3173–3175. doi:10.1063/1.117951

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Sean Cadogan in the School of Physical, Environmental and Mathematical Sciences at The University of New South Wales Canberra for his support in performing X-ray diffraction experiments. Dr. Md. Quadir at Faculty of Science and Engineering, Curtin University is also acknowledged for his help with EBSD measurements. Moreover, the authors are grateful for the support of A/Prof. Jodie Bradby and Mr. Christopher Tanner in the Department of Electronic Materials Engineering in the Research School of Physics and Engineering at the Australian National University in conducting nanoindentation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. H. Ameri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Ameri, A.A.H., Elewa, N.N., Ashraf, M., Escobedo-Diaz, J.P., Hazell, P.J. (2017). Estimation of Dislocation Density in Metals from Hardness Measurements. In: Ikhmayies, S., et al. Characterization of Minerals, Metals, and Materials 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51382-9_48

Download citation

Publish with us

Policies and ethics