Skip to main content

A Method of Introducing Weights into OWA Operators and Other Symmetric Functions

  • Chapter
  • First Online:
Uncertainty Modeling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 683))

Abstract

This paper proposes a new way of introducing weights into OWA functions which are popular in fuzzy systems modelling. The proposed method is based on replicating the inputs of OWA the desired number of times (which reflect the importances of the inputs), and then using a pruned n-ary tree construction to calculate the weighted OWA. It is shown that this tree-based construction preserves many useful properties of the OWA, and in fact produces the discrete Choquet integral. A computationally efficient algorithm is provided. The tree-based construction is universal in its applicability to arbitrary symmetric idempotent n-ary functions such as OWA, and transparent in its handling the weighting vectors. It will be a valuable tool for decision making systems in the presence of uncertainty and for weighted compensative logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Beliakov. Shape preserving splines in constructing WOWA operators: Comment on paper by V. Torra in Fuzzy Sets and Systems 113 (2000) 389–396. Fuzzy Sets and Systems, 121:549–550, 2001.

    Google Scholar 

  2. G. Beliakov and J.J. Dujmovic. Extension of bivariate means to weighted means of several arguments by using binary trees. Information Sciences 331:137–147, 2016.

    Google Scholar 

  3. G. Beliakov, S. James, and G. Li. Learning Choquet-integral-based metrics for semisupervised clustering. IEEE Trans. on Fuzzy Systems, 19:562–574, 2011.

    Article  Google Scholar 

  4. G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Practitioners, volume 221 of Studies in Fuzziness and Soft Computing. Springer-Verlag, Berlin, 2007.

    Google Scholar 

  5. P.S. Bullen. Handbook of Means and Their Inequalities. Kluwer, Dordrecht, 2003.

    Book  MATH  Google Scholar 

  6. T. Calvo, R. Mesiar, and R.R. Yager. Quantitative weights and aggregation. IEEE Trans. on Fuzzy Systems, 12:62–69, 2004.

    Article  Google Scholar 

  7. B. De Baets and J. Fodor. Van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets and Systems, 104:133–136, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.J. Dujmovic. Continuous preference logic for system evaluation. IEEE Trans. on Fuzzy Systems, 15:1082–1099, 2007.

    Article  Google Scholar 

  9. J.J. Dujmovic. An efficient algorithm for general weighted aggregation. In Proc. of the 8th AGOP Summer School, Katowice, Poland, 2015.

    Google Scholar 

  10. J.J. Dujmovic. Weighted compensative logic with adjustable threshold andness and orness. IEEE Trans. on Fuzzy Systems, 23:270–290, 2015.

    Article  Google Scholar 

  11. J.J. Dujmovic and G. Beliakov. Idempotent weighted aggregation based on binary aggregation trees. International Journal of Intelligent Systems, 32:31–50, 2017.

    Google Scholar 

  12. J.J. Dujmovic and H.L. Larsen. Generalized conjunction/disjunction. Int. J. Approx. Reasoning, 46:423–446, 2007.

    Article  Google Scholar 

  13. A. Emrouznejad and M. Marra. Ordered weighted averaging operators 1988-2014: A citation-based literature survey. Int. J. Intelligent Systems, 29:994–1014, 2014.

    Article  Google Scholar 

  14. M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation Functions. Encyclopedia of Mathematics and Its Foundations. Cambridge University Press, 2009.

    Book  MATH  Google Scholar 

  15. M. Grabisch, T. Murofushi, and M. Sugeno, editors. Fuzzy Measures and Integrals. Theory and Applications. Physica – Verlag, Heidelberg, 2000.

    MATH  Google Scholar 

  16. F. Herrera and E. Herrera-Viedma. A study of the origin and uses of the Ordered Weighted Geometric operator in multicriteria decision making. Int. J. Intelligent Systems, 18:689–707, 2003.

    Article  MATH  Google Scholar 

  17. E.P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer, Dordrecht, 2000.

    Book  MATH  Google Scholar 

  18. Y. Narukawa and V. Torra. Fuzzy measure and probability distributions: Distorted probabilities. IEEE Trans. on Fuzzy Systems, 13:617–629, 2005.

    Article  Google Scholar 

  19. U. Thole, H.-J. Zimmermann, and P. Zysno. On the suitability of minimum and product operators for the intersection of fuzzy sets. Fuzzy Sets and Systems, 2:167–180, 1979.

    Article  MATH  Google Scholar 

  20. V. Torra. The weighted OWA operator. Int. J. Intelligent Systems, 12:153–166, 1997.

    Article  MATH  Google Scholar 

  21. V. Torra. The WOWA operator and the interpolation function W*: Chen and Otto’s interpolation revisited. Fuzzy Sets and Systems, 113:389–396, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  22. Z.S. Xu and Q.L. Da. The ordered weighted geometric averaging operator. Int. J. Intelligent Systems, 17:709–716, 2002.

    Article  MATH  Google Scholar 

  23. R. R. Yager. Norms induced from OWA operators. IEEE Trans. on Fuzzy Systems, 18(1):57–66, 2010.

    Article  Google Scholar 

  24. R.R. Yager. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. on Systems, Man and Cybernetics, 18:183–190, 1988.

    Google Scholar 

  25. R.R. Yager. Including importances in OWA aggregations using fuzzy systems modeling. IEEE Trans. on Fuzzy Systems, 6:286–294, 1998.

    Article  Google Scholar 

  26. R.R. Yager. Uninorms in fuzzy systems modeling. Fuzzy Sets and Systems, 122:167–175, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  27. R.R. Yager. Generalized OWA aggregation operators. Fuzzy Optimization and Decision Making, 3:93–107, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  28. R.R. Yager and J. Kacprzyk, editors. The Ordered Weighted Averaging Operators. Theory and Applications. Kluwer, Boston, 1997.

    MATH  Google Scholar 

  29. R.R. Yager, J. Kacprzyk, and G. Beliakov, editors. Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Springer, Berlin, New York, 2011.

    Google Scholar 

  30. L. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  31. H.-J. Zimmermann and P. Zysno. Latent connectives in human decision making. Fuzzy Sets and Systems, 4:37–51, 1980.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beliakov, G. (2017). A Method of Introducing Weights into OWA Operators and Other Symmetric Functions. In: Kreinovich, V. (eds) Uncertainty Modeling. Studies in Computational Intelligence, vol 683. Springer, Cham. https://doi.org/10.1007/978-3-319-51052-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51052-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51051-4

  • Online ISBN: 978-3-319-51052-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics