Skip to main content

Abstract

Parasitism is a highly common mode of living in animals being parasite species very abundant. Parasites affect in a different ways the host life through subtle effects to more dramatic effects causing population crashes and then regulating host populations. Antarctica and the Southern Ocean wildlife show also parasites although the published information is very scarce. This is even in the case of the most studied group of Antarctic seabirds, the penguins. In this chapter, we analyze the published information about the presence, epidemiology, life cycles, and effects of macroparasites, helminths, and ectoparasites in Antarctic penguins. Most of the publications only give information about the presence/absence of parasites, and very few give data about epidemiology such as prevalence or intensity of parasitization. The information about intermediate host is almost absent, and parasite effects have been addressed very few times. Moreover, the information is based on few areas, and there is not any long-term data set which makes difficult a broad understanding of the impact of parasites in the ecology of penguins. Nevertheless, the little information allows extracting some conclusions. First, the diversity of parasite species is very low which can be explained by the narrow diet spectrum and the harsh conditions. Second, helminths occur at higher prevalence than ectoparasites. In general, a trend of decreased macroparasite prevalence towards more southerly locations can be identified, although the small number of studies precludes a robust conclusion. Third, general parasite effects have been reported causing tissue damage, changes in immune parameters, reduction in body mass, reduction of breeding success, and transmission of diseases, this later in the case of ticks. Finally, it is expected that climate change will affect host-parasite interaction in penguins due to changes in the parasite distribution, host exposure, or resistance, but a higher number of studies with good quality data at long term are needed to confirm the expectations and a deeper understanding of the ecological aspects of parasites such as life cycle, epidemiology, and health impacts in the penguins.

Julia I. Diaz, Daniel González-Acuña, Erli Schneider Costa, Meagan Dewar, Rachael Gray, Michelle Power, Gary Miller, Ralph Vanstreels, and Andrés Barbosa are Working Group of Health Monitoring of Birds and Marine Mammals of the SCAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams NJ, Klages NT (1989) Temporal variation of the diet of the gentoo penguin Pygoscelis papua at sub-antarctic Marion Island. Col Waterbirds 12:30–36

    Article  Google Scholar 

  • Ainley DG, Wilson PR, Barton KJ, Ballard G, Nur N, Karl B (1998) Diet and foraging effort of Adélie penguin in relation to pack-ice conditions in the southern Ross Sea. Polar Biol 20:311–319

    Article  Google Scholar 

  • Allison FR, Desser SS, Whitten LK (1978) Further observations on the life cycle and vectors of the haemosporidian Leucocytozoon tawaki and its transmission to the Fiordland crested penguin. N Zeal J Zool 5:371–374

    Article  Google Scholar 

  • Andersen KI, Lysfjord S (1982) The functional morphology of the scolex of two Tetrabothrius Rudolphi 1819 species (Cestoda: Tetrabothriidae) from penguins. Parasitol Res 67:299–307

    Google Scholar 

  • Anderson RC (2000) Nematode Parasite of Vertebrates. Their development and Transmission, CAB International (ed) 2nd edn. Oxon, Wallingford, UK, 650 p

    Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  PubMed  Google Scholar 

  • Baer JG (1954) Revision taxonomique et étude biologique des cestodes de la famille des Tetrabothriidae parasites d´oiseaux de haute mer et de mammiferes marins, vol 1. Mémoires de l´Université de Neuchatel, Neuchatel, pp 4–122

    Google Scholar 

  • Banks JC, Palma RL, Paterson AM (2006) Cophylogenetic relationships between penguins and their chewing lice. J Evol Biol 19:156–166

    Article  CAS  PubMed  Google Scholar 

  • Barbosa A, Merino S, de Lope F, Moller AP (2002) Effects on feather lice on flight behavior of male barn swallow (Hirundo rustica). Auk 119:213–216

    Article  Google Scholar 

  • Barbosa A, Palacios MJ (2009) Health of Antarctic birds: a revision of their parasites, pathogens and diseases. Polar Biol 32:1095–1115

    Article  Google Scholar 

  • Barbosa A, Benzal J, Vidal V, D’Amico V, Coria NR, Diaz JI, Motas M, Palacios MJ, Cuervo JJ, Ortiz J, Chitimia L (2011) Seabird ticks (Ixodes uriae) distribution along the Antarctic Peninsula. Polar Biol 34:1621–1624

    Article  Google Scholar 

  • Barbosa A, Benzal J, De León A, Moreno J (2012) Population decline of chinstrap penguins (Pygoscelis antarctica) on deception Island, South Shetlands, Antarctica. Polar Biol 35:1453–1457

    Article  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL (2009) Increase in feeding by the tick Ixodes uriae on Adélie penguins during a prolonged summer. Antarct Sci 21:151–152

    Article  Google Scholar 

  • Bergstrom S, Haemig PD, Olsen B (1999) Distribution and abundance of the tick Ixodes uriae in a diverse subantarctic community. J Parasitol 85:25–27

    Article  CAS  PubMed  Google Scholar 

  • Bertellotti M, D’Amico V, Palacios MG, Barbosa A, Coria NR (2016) Effects of antihelminthic treatment on cell-mediated immunity in Gentoo penguin chicks. Polar Biol 39:1207–1212

    Article  Google Scholar 

  • Brandão ML et al (2014) Checklist of Platyhelminthes, Acanthocephala, Nematoda and Arthropoda parasitizing penguins of the world. Check List 10(3):562–573. doi:10.15560/10.3.562

    Article  Google Scholar 

  • Brooke ML (1985) The effect of allopreening on tick burdens of molting Eudyptid penguins. Auk 102:893–895

    Google Scholar 

  • Bush MW, Kuhn T, Münster J, Klimple S (2012) Marine crustaceans as potential hosts and vectors for metazoan parasites. Parasitol Res Monogr 3:329–360

    Article  Google Scholar 

  • Carlini R, Coria NR, Santos MM, Negrete J, Juares MA, Daneri GA (2009) Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (King George Island). Polar Biol 32:1427–1433

    Article  Google Scholar 

  • Cherel Y, Kooyman GL (1998) Food of emperor penguins (Aptenodytes forsteri) in the western Ross Sea, Antarctica. Mar Biol 130:335–344

    Article  Google Scholar 

  • Cielecka D, Wojciechowska A, Zdzitowiecki K (1992) Cestodes from penguins on King George Island (South Shetlands, Antarctic). Acta Parasitol 37:65–72

    Google Scholar 

  • Clarke J, Kerry K (2000) Diseases and parasites of penguin. Penguin Conserv 13:5–24

    Google Scholar 

  • Clay T (1967) Mallophaga (biting lice) and Anoplura (sucking lice). Part I: austrogoniodes (Mallophaga) parasitic on Penguins (Sphenisciformes). Ant Res Ser 10:149–155

    Google Scholar 

  • Clay T, Moreby C (1967) Mallophaga (biting lice) and Anoplura (sucking lice). Part II: keys and locality lists of Mallophaga and Anoplura. Ant Res Ser 10:157–196

    Google Scholar 

  • Clay T, Moreby C (1970) Mallophaga and Anoplura of Subantarctic islands. Pac Insect Monogr 23:216–220

    Google Scholar 

  • D’Amico VL, Bertelotti M, Diaz JI, Coria NR, Vidal V, Barbosa A (2014) Leucocyte levels in some Antarctic and non-Antarctic penguins. Ardeola 61:145–162

    Article  Google Scholar 

  • De Meillon B (1952) The fleas of the seabirds in the Southern Ocean. ANARE Reports Series B Vol 1 Zoology

    Google Scholar 

  • Diaz JI, Cremonte F, Navone GT (2010) Helminths of the Magellanic penguin, Spheniscus magellanicus (Sphenisciformes), during the breeding season in Patagonian Coast, Chubut, Argentina. Comp Parasitol 77:172–177

    Article  Google Scholar 

  • Diaz JI, Fusaro B, Longarzo L, Coria NR, Vidal V, Jerez S, Ortiz J, Barbosa A (2013) Gastrointestinal helminths of Gentoo Penguins (Pygoscelis papua) from Stranger Point, 25 de Mayo/King George Island, Antartica. Parasitol Res 112:1877–1881. doi:10.1007/s00436-013-3341-3

    Article  PubMed  Google Scholar 

  • Diaz JI, Fusaro B, Longarzo L, Coria NR, Vidal V, D’amico VL, Barbosa A (2016) Gastrointestinal helminths of Adelie Penguins (Pygoscelis adeliae) from Antarctica. Polar Res 35:28516

    Article  Google Scholar 

  • Dimitrova ZM, Chipev NH, Georgiev BB (1996) Record of Corynosoma pseudohamanni Zdzitowiecki, 1984 (Acanthocephala, Polymorphidae) in birds at Livingston, and South Shetlands, with a Review of Antarctic Avian Acanthocephalans. Bulg Antarct Res Life Sci 1:102–110

    Google Scholar 

  • Earle RA, Huchzermeyer FW, Brossy JJ (1993) Babesia peircei sp. nov. from the Jackass penguin. S Afr J Zool 28:88–90

    Article  Google Scholar 

  • Emslie SD, Fraser W, Smith RC, Walker W (1998) Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers island, Antarctic Peninsula. Ant Sci 10:257–268

    Article  Google Scholar 

  • Fan T, Deser C, Schneider DP (2014) Recent Antarctic sea ice trends in the context of the Southern Ocean surface climate variation since 1950. Geophys Res Lett 41:2419–2426

    Article  Google Scholar 

  • Flores H, Atkinson A, Kawagushi S, Krafft B, Milinevsky G, Nicol S, Reiss C, Tarling GA, Werner R, Bravo Rebolledo E, Cirelli V, Cuzin-Roudy J, Fielding S, Groeneveld J, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov EA, Rombola E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec J, Trathan P, Tremblay N, Van de Putte A, van Franeker JA, Werner T (2012) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19

    Article  Google Scholar 

  • Fonteneau F, Geiger S, Marion L, Le Maho Y, Robin JP, Kinsella JM (2011) Gastrointestinal helminths of King penguins (Aptenodytes patagonicus) at Crozet Archipelago. Polar Biol 34:1249–1252. doi:10.1007/s00300-011-0970-9

    Article  Google Scholar 

  • Forcada J, Trathan PN, Reid K, Murphy EJ, Croxall JP (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Glob Chang Biol 12:411–423. doi:10.1111/j.1365-2486.2006.01108.x

    Article  Google Scholar 

  • Forcada J, Trathan PN (2009) Penguin responses to climate change in the Southern Ocean. Glob Chang Biol 15:1618–1630

    Article  Google Scholar 

  • Fredes F, Raffo E, Muñoz P, Herrera M (2006) Fauna parasitaria gastrointestinal en polluelos de Pinguino Papua (Pygoscelis papua) encontrados muertos en zona antártica especialmente protegida (ZAEP N°150). Parasitol Latinoam 61:179–182

    Article  Google Scholar 

  • Fredes F, Madariaga M, Ravo E, Valencia J, Herrera M, Godoy C, Alcaíno H (2007) Gastrointestinal parasite fauna of Gentoo penguins (Pygoscelis papua) from the Península Munita, Bahía Paraíso, Antarctica. Antarct Sci 19:93–94

    Google Scholar 

  • Fredes F, Raffo E, Muñoz P, Herrera M, Godoy C (2008) Fauna parasitaria gastrointestinal en el pingüino Adelia (Pygoscelis adeliae) de zona antártica especialmente protegida (ZAEPN 150). Parasitología latinoamericana 63(1–2–3–4):64–68. doi:10.4067/S0717-77122008000100011

  • Frenot Y, de Oliveira E, Gauthier-Clerc M, DeunV J, Bellido A, Vernon P (2001) Life cycle of the tick Ixodes uriae in penguin colonies: relationship with host breeding activity. Int J Parasitol 31:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Garbin L, Navone GT, Diaz JI, Cremonte F (2007) Further study of Contracaecum pelagicum (Nematoda: Anisakidae) in Spheniscus magellanicus (Aves: Spheniscidae) from two Argentine coast sites. J Parasitol 93:143–150

    Article  PubMed  Google Scholar 

  • Garbin L, Diaz JI, Cremonte F, Navone GT (2008) Contracaecum chubutensis n. sp. New anisakid species parasitizing the imperial cormorant Phalacrocorax atriceps from the North Patagonian coast, Argentina. J Parasitol 94:852–859

    Article  PubMed  Google Scholar 

  • Gauthier-Clerc M, Clerquin Y, Handrich Y (1998) Hyperinfestation by ticks Ixodes uriae: a possible cause of death in adult king penguins, a long-lived seabird. Colonial Waterbird 21:229–233

    Article  Google Scholar 

  • Gauthier-Clerc M, Jaulhac B, Frenot Y, Bachelard C, Monteil H, Le Maho Y, Handrich Y (1999) Prevalence of Borrelia burgdorferi (the Lyme disease angent) antibodies in king penguin Aptenodytes patagonicus in Crozet Archipielago. Polar Biol 22:141–143

    Article  Google Scholar 

  • Gauthier-Clerc M, Manguin S, Le Bohec C, Gendner JP, Le Maho Y (2003) Comparison of behaviour, body mass, haematocrit level, site fidelity and survival between infested and non-infested king penguin Aptenodytes patagonicus by ticks Ixodes uriae. Polar Biol 26:379–382

    Google Scholar 

  • Georgiev BB, Vasileva GP, Chipev NH, Dimitrova ZM (1996) Cestodes of seabirds at Livingston Island, South Shetlands. Bulg Antarct Res Life Sci 1:111–127

    Google Scholar 

  • Gonzalez-Acuña D, Hernandez J, Moreno L, Herrmann B, Palma R et al (2013) Health evaluation of wild gentoo penguins (Pygoscelis papua) in the Antarctic Peninsula. Polar Biol 36:1749–1760

    Article  Google Scholar 

  • Gothe R, Kunze K, Hoogstraal H (1979) The mechanisms of pathogenicity in the tick paralysis. J Med Entomol 16:357–369

    Article  CAS  PubMed  Google Scholar 

  • Hoberg EP (1986) Aspects of ecology and biogeography of Acanthocephala in Antarctic seabirds. Ann Parasit Hum Comp 61:199–214

    Article  Google Scholar 

  • Hoberg EP (1987) Tetrabothrius shinni sp. nov. (Eucestoda) from Phalacrocorax atriceps bransfieldensis (Pelecaniformes) in Antarctica with comments on morphological variation, host-parasite biogeography, and evolution. Can J Zool 65:2969–2975

    Article  Google Scholar 

  • Hoberg EP (1996) Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography in marine systems. Bull Scand Soc Parasitol 6:65–89

    Google Scholar 

  • Hoberg EP (2005) Marine birds and their helminth parasites. In: Rohde K (ed) Marine parasitology, (Chapter 10, Economic, environmental and medical importance). CSIRO, Sydney, pp 414–421

    Google Scholar 

  • Hunter PE (1970) Acarina: Mesostigmata: free-living mites of South Georgia and Heard Island. Pacific Insects Monograph 23:43–70

    Google Scholar 

  • Holloway HL Jr, Bier W (1967) Notes on the host specificity of Corynosoma hamanni (Linstow, 1892). Bull Wildl Dis Assoc 3:76–78

    Article  Google Scholar 

  • Ippen R, Odening K, Henne D (1981) Cestode Parorchites zederi and sarcosporidian Sarcocystis spp. Infections in penguins of the South Shetland Islands. Erkr Zootiere 22:203–210

    Google Scholar 

  • Johnston TH (1937) Australian Antarctic Expedition 1911–1914. Scientific Reports. Series C, Zoology and Botany, vol X, part 4. Cestoda, p 77

    Google Scholar 

  • Johnston TH, Mawson PM (1945) Parasitic nematodes. B.A.N.Z.A.R.E. Reports, Series B, vol. V, part 2, pp 73–160

    Google Scholar 

  • Kagei N, Asano K, Kihata M (1978) On the examination against the parasites of antarctic krill, Euphausia superba. Sci Rep Whales Res Inst 30:311–313

    Google Scholar 

  • Kerry KR, Riddle MJ (2009) Health of Antarctic wildlife: a challenge for science and policy. Springer, Berlin

    Book  Google Scholar 

  • Kleinertz S, Christmann S, Silva LMR, Hirzmann J, Hermosilla C, Taubert A (2014) Gastrointestinal parasite fauna of Emperor Penguins (Aptenodytes forsteri) at the Atka Bay. Antarct Parasitol Res 113:4133–4139. doi:10.1007/s00436-014-4085-4

    Article  CAS  Google Scholar 

  • Kloser H, Plotz J, Palm H, Bartsch A, Hubold G (1992) Adjustment of anisakid nematode life cycles to the high Antarctic food web as shown by Contracaecum radiatum and C. osculatum in the Weddell Sea. Antarct Sci 4:171–178

    Article  Google Scholar 

  • Laskowski Z, Zdzitowiecki K (2005) The helminth fauna of some notothenioid fishes collected from the shelf of Argentine Islands, west Antarctica. Pol Polar Res 26:315–324

    Google Scholar 

  • Laskowski Z, Korczak-Abshire M, Zdzitowiecki K (2012) Changes in acanthocephalan infection of the Antarctic fish Notothenia coriiceps in Admiralty Bay, King George Island, over 29 years. Pol Polar Res 33:99–108

    Google Scholar 

  • Leiper RT, Atkinson EL (1914) Helminthes of the British Antarctic Expedition, 1910–13. P.Z.S., pp 222–226

    Google Scholar 

  • Lescröel A, Ridoux V, Bost C-A (2004) Spatial and temporal variation in the diet of the gentoo penguin (Pygoscelis papua) at Kerguelen Islands. Polar Biol 27:206–216

    Article  Google Scholar 

  • Mangin S, Gauthier-Clerc M, Frenot Y, Gendner JP, Le Maho Y (2003) Ticks Ixodes uriae and the breeding performance of a colonial seabird king penguin Aptenodytes patagonicus. J Avian Biol 34:30–34

    Article  Google Scholar 

  • Markowski S (1952) The Cestodes of seals from the antarctica – vol 1 num 7. Published by Bulletin of the British Museum (Natural History) Zoology

    Google Scholar 

  • Martín MA, Ortiz JM, Seva J, Vidal V, Valera F, Benzal J, Cuervo J, de la Cruz C, Belliure J, Martínez AM, Diaz JI, Motas M, Jerez S, D’Amico VL, Barbosa A (2016) Mode of attachment and pathology caused by Parorchites zederi in three species of penguins: Pygoscelis papua, Pygoscelis adeliae, and Pygoscelis antarctica in Antarctica Journal of Wildlife Diseases, 52: 568–575. DOI: 10.7589/2015-07-200

  • Mawson PM (1953) Parasitic nematoda collected by the Australian National Antarctic Research Expedition: Heard Island and Macquarie Island 1948–1951. Parasitology 43:291–297

    Article  CAS  PubMed  Google Scholar 

  • McCoy KD, Beis P, Barbosa A, Cuervo JJ, Fraser WR, Gonzalez-Solis J, Jourdain E, Poisbleau M, Quillfeldt P, Leger E, Dietrich M (2013) Population genetic structure and colonisation of the western Antarctic Peninsula by the seabird tick Ixodes uriae. Mar Ecol Prog Ser 459:109–120

    Article  Google Scholar 

  • Meggitt FJ (1924) The cestodes of mammals. London, p 282

    Google Scholar 

  • de Meeus T, Renaud F (2002) Parasites within the new phylogeny of eukariotes. Trends Parasitol 18:247–251

    Article  PubMed  Google Scholar 

  • Meredith MP, King JC (2005) Rapid ocean climate change at the WAP. Geophys Res Lett 32:L19604

    Google Scholar 

  • Miyazaki I (1991) An illustrated book of helminthic zoonoses. Southeast Asian Medical Information Center (International Medical Foundation of Japan) Nihon Kokusai Iryōdan

    Google Scholar 

  • Moller AP (1997) Parasitism and the evolution of host life history. In: Clayton DH, Moore J (eds) Host-parasite evolution. General principles and avian moldels. Oxford University press, New York. pp 105–127

    Google Scholar 

  • Montero E, Gonzalez LM, Chaparro A, Benzal J, Bertellotti M, Masero JA, Colominas-Ciuró R, Vidal V, Barbosa A (2016) First record of Babesia in Antarctic penguins. Ticks Tick Borne Dis 7(3):498–501

    Article  PubMed  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic peninsula. Science 323:1470–1473

    Article  CAS  PubMed  Google Scholar 

  • Morand S, Deter J (2009) Parasitism and regulation of the host population. In: Thomas F, Guégan JF, Renaud F (eds) Ecology and evolution of parasitism. Oxford University Press, Oxford, pp 83–104

    Google Scholar 

  • Morgan IR, Westbury HA, Caple IW, Campbell J (1981) A survey of virus infection in sub-antarctic penguins on Macquarie Island, Southern Ocean. Aust Vet J 57:333–335

    Article  CAS  PubMed  Google Scholar 

  • Murray MD, Vestjens WJM (1967) Studies on the ectoparasites of seals and penguins. Aust J Zool 15:715–725

    Article  Google Scholar 

  • Murray MD, Palma RL, Pilgrim RLD (1991) Ectoparasites of Australian, New Zealand and Antarctic birds. Appendix I. In: Marchant S, Higgins PJ (eds) Handbook of Australian, New Zealand and Antarctic birds, vol I, part A. Oxford University Press, Melbourne

    Google Scholar 

  • Muzaffar SB, Jones IL (2004) Parasites and diseases of the auks (Alcidae) of the world and their ecology. Mar Ornithol 32:121–146

    Google Scholar 

  • Olsen B, Duffy DC, Jaenson TGT, Gylfe A, Bonnedahl J, Berström S (1995) Transhemispheric exchange of Lyme disease spirochetes by seabirds. J Clin Microbiol 33:3270–3274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios MJ, Valera F, Barbosa A (2012) Experimental assessment of the effects of gastrointestinal parasites on offspring quality in chinstrap penguins (Pygoscelis antarctica). Parasitology 139:819–824

    Article  CAS  PubMed  Google Scholar 

  • Palma RL, Horning DS (2002) The lice (Insecta:Phthiraptera) from Macquarie island. ANARE Res Notes 105:1–27

    Google Scholar 

  • Perrot-Minnot M-J, Cézilly F (2009) Parasites and behaviour. In: Thomas F, Guégan J-F, Renaud F (eds) Ecology and evolution of parasitism. Oxford University Press, Oxford, pp 49–67

    Google Scholar 

  • Poulin R, Morand S (2004) Parasite biodiversity. Smithsonian Books, Washington, DC, p 216

    Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Monogr Popul Biol 15:1–237

    CAS  PubMed  Google Scholar 

  • Prudhoe S (1969) Cestodes from fish, birds and whales. BANZARE Rep Ser B VIII (Part 9)

    Google Scholar 

  • Pütz K (1995) The post-moult diet of Emperor Penguins (Aptenodytes forsteri) in the eastern Weddell Sea. Antarct Polar Biol 15:457–463

    Google Scholar 

  • Rocka A (2003) Cestodes of the Antarctic fishes. Polar Res 24:261–276

    Google Scholar 

  • Rocka A (2004) Nematodes of the Antarctic fishes. Polar Res 25:135–152

    Google Scholar 

  • Schmidt H (1965) Tetrameres (G.) wetzeli sp. n. (Nematoda, Spirurida), eine neue Tetrameresart aus dem Felsenpinguin, Eudyptes (=Catarrhactes) chrysocome Forst (Aves, Sphenisciformes). Z f Parasitenkunde 26:71–81

    CAS  Google Scholar 

  • Schramm F, Gauthier-Clerc M, Fournier JC, McCoy KD, Barthel C, Postic D, Handrich Y, Le Maho Y, Jaulhac B (2014) First detection of Borrelia burgdorferi sensu lato DNA in king penguins (Aptenodytes patagonicus halli). Ticks Tick Borne Dis 5:939–942. doi:10.1016/j.ttbdis.2014.07.013

    Article  PubMed  Google Scholar 

  • Schultz A, Petersen SL (2003) Absence of haematozoa in breeding Macaroni Eudyptes chrysolophus and Rockhopper E. chrysocome Penguins at Marion Island. African Journal of Marine Science 25:499–502

    Google Scholar 

  • Siers S, Merkel JF, Bataille A, Vargas FH, Parker PG (2010) Ecological correlates of microfilarial prevalence in endangered Galapagos birds. J Parasitol 96:259–272

    Article  PubMed  Google Scholar 

  • Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31:933–948

    Article  CAS  PubMed  Google Scholar 

  • Stammerjohn S, Martinson D, Smith R, Yuan X, Rind DH (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J Geophys Res 113:C03S90

    Google Scholar 

  • Tragardh (1908) The Acari of the Swedish South Polar Expedition. Wissensch. Ergebn. Schwed. Südpolar Expedition 5:1–34

    Google Scholar 

  • Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci U S A 108:7625–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal V, Ortiz J, Diaz JI et al (2012) Gastrointestinal parasites in chinstrap penguins from Deception Island, South Shetlands, Antarctica. Parasitol Res 111:723–727. doi:10.1007/s00436-012-2892-z1

    Article  CAS  PubMed  Google Scholar 

  • Vidal V et al (2016) Morphological, molecular and phylogenetic analyses of the spirurid nematode Stegophorus macronectes (Johnston & Mawson, 1942). J Helminthol. doi:10.1017/S0022149X15000218

    PubMed  Google Scholar 

  • Williams TD (1995) The penguins. Spheniscidae. (Birds Families of the Word, No 2). Oxford University Press, p 328

    Google Scholar 

  • Wilson N (1967) Acarina: Mesostigmata: Halarachnidae, Rhynonisidae of South Georgia, Heard and Kerguelen. Pacific Insect Monogr 23:71–77

    Google Scholar 

  • Windsor DA (1998) Controversies in parasitology. Most of the species on Earth are parasites. Int J Parasitol 28:1939–1941

    Article  CAS  PubMed  Google Scholar 

  • Yabsley MJ, Parsons NJ, Horne EC, Shock BC, Purdee M (2012) Novel relapsing fever Borrelia detected in African penguins (Spheniscus demersus) admitted to two rehabilitation centers in South Africa. Parasitol Res 110:1125–1130

    Article  PubMed  Google Scholar 

  • Zdzitowiecki K (1991) Synopses of the Antarctic benthos koenigstein koeltz scientific books. Antarctic Acanthocephala, Koenigstein, p 116

    Google Scholar 

  • Zdzitowiecki K, Drózdz J (1980) Redescription of Stegophorus macronectes (Johnston et Mawson, 1942) and description of Stegophorus arctowskii sp. n. (Nematoda, Spirurida) from birds of South Shetlands (the Antarctic). Acta Parasitol 26:205–212

    Google Scholar 

Download references

Acknowledgments

This work is a contribution from the Genes to Geoscience funded workshop “Microbial and Parasitic impacts on Antarctic wildlife” held in August 2015 at Macquarie University, Sydney, Australia, and organized by the Working Group of Health Monitoring of Birds and Marine Mammals of the SCAR Expert Group of Birds and Marine Mammals. Macquarie University and the Standing Scientific group of Life Sciences of SCAR funded the workshop. JID is partially supported by PIP 0698 CONICET and N758 UNLP. AB is supported by the PINGUCLIM and CTM2011-24427 project funded by the Spanish Ministry of Economy and Competitiveness. RETV is supported by CAPES through the Department of Pathology (FMVZ-USP). DGA is supported by INACH T-12-13.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julia I. Diaz or Andrés Barbosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diaz, J.I. et al. (2017). Macroparasites in Antarctic Penguins. In: Klimpel, S., Kuhn, T., Mehlhorn, H. (eds) Biodiversity and Evolution of Parasitic Life in the Southern Ocean. Parasitology Research Monographs, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-46343-8_9

Download citation

Publish with us

Policies and ethics