Skip to main content

Steroid Hormone Receptors in the Corpus Luteum

  • Chapter
  • First Online:
Book cover The Life Cycle of the Corpus Luteum

Abstract

The function of the corpus luteum (CL) is to produce progesterone (P4), which is the main regulator of estrous cycle duration and creates suitable conditions for embryo implantation and development. The CL also synthesizes moderate amounts of estradiol (E2). The action of these steroid hormones on target cells are evoked by specific nuclear receptors that belong to the family of receptor-dependent transcription factors. The physiological effect of P4 upon target cells is mediated through interaction of this hormone with nuclear progesterone receptor (PGR) isoforms A (PGRA) and B (PGRB) and that of E2 through the alpha (ERα) and beta (ERβ) receptors. Steroids may also affect cells through a nongenomic mechanism, which involves the membrane steroid-binding proteins such as the progesterone receptor membrane component (PGRMC) 1 and 2 and the membrane progestin receptors (mPR) alpha (mPRα), beta (mPRβ), and gamma (mPRγ), and the G protein-coupled estrogen receptor (GPR30). These proteins rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of nuclear and membrane steroid hormone receptors enhances their regulatory influence on the CL function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misrahi M, Venencie PY, Saugier-Veber P, Sar S, Dessen P, Milgrom E. Structure of the human progesterone receptor gene. Biochim Biophys Acta. 1993;1216(2):289–92.

    Article  CAS  PubMed  Google Scholar 

  2. Conneely OM, Kettelberger DM, Tsai MJ, Schrader WT, O’Malley BW. The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J Biol Chem. 1989;264(24):14062–4.

    CAS  PubMed  Google Scholar 

  3. Mulac-Jericevic B, Conneely OM. Reproductive tissue selective actions of progesterone receptors. Reproduction. 2004;128(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  4. Giangrande PH, Pollio G, McDonnell DP. Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J Biol Chem. 1997;272(52):32889–900.

    Article  CAS  PubMed  Google Scholar 

  5. Pieber D, Allport VC, Bennett PR. Progesterone receptor isoform A inhibits isoform B-mediated transactivation in human amnion. Eur J Pharmacol. 2001;427(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor AH, McParland PC, Taylor DJ, Bell SC. The cytoplasmic 60 kDa progesterone receptor isoform predominates in the human amniochorion and placenta at term. Reprod Biol Endocrinol. 2009;7:22.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wei LL, Hawkins P, Baker C, Norris B, Sheridan PL, Quinn PG. An amino-terminal truncated progesterone receptor isoform, PRc, enhances progestin-induced transcriptional activity. Mol Endocrinol. 1996;10(11):1379–87.

    CAS  PubMed  Google Scholar 

  8. Berisha B, Pfaffl MW, Schams D. Expression of estrogen and progesterone receptors in the bovine ovary during estrous cycle and pregnancy. Endocrine. 2002;17(3):207–14.

    Article  CAS  PubMed  Google Scholar 

  9. Shibaya M, Matsuda A, Hojo T, Acosta TJ, Okuda K. Expressions of estrogen receptors in the bovine corpus luteum: cyclic changes and effects of prostaglandin F2alpha and cytokines. J Reprod Dev. 2007;53(5):1059–68.

    Article  CAS  PubMed  Google Scholar 

  10. Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med. 2006;27(4):299–402.

    Article  CAS  PubMed  Google Scholar 

  11. Cheung J, Smith DF. Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol. 2000;14(7):939–46.

    Article  CAS  PubMed  Google Scholar 

  12. Smith DF. Chaperones in progesterone receptor complexes. Semin Cell Dev Biol. 2000;11(1):45–52.

    Article  PubMed  Google Scholar 

  13. Griekspoor A, Zwart W, Neefjes J, Michalides R. Visualizing the action of steroid hormone receptors in living cells. Nucl Recept Signal. 2007;5, e003.

    PubMed  PubMed Central  Google Scholar 

  14. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–41.

    CAS  PubMed  Google Scholar 

  15. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature. 1996;383(6595):99–103.

    Article  CAS  PubMed  Google Scholar 

  16. Soutoglou E, Viollet B, Vaxillaire M, Yaniv M, Pontoglio M, Talianidis I. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J. 2001;20(8):1984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rowan BG, O’Malley BW. Progesterone receptor coactivators. Steroids. 2000;65(10-11):545–9.

    Article  CAS  PubMed  Google Scholar 

  18. Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 1997;387(6634):733–6.

    Article  CAS  PubMed  Google Scholar 

  19. McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999;20(3):321–44.

    CAS  PubMed  Google Scholar 

  20. Tyler JK, Kadonaga JT. The “dark side” of chromatin remodeling: repressive effects on transcription. Cell. 1999;99(5):443–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature. 1999;402(6757):93–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lazar MA. Nuclear receptor corepressors. Nucl Recept Signal. 2003;1, e001.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Feng Q, O’Malley BW. Nuclear receptor modulation--role of coregulators in selective estrogen receptor modulator (SERM) actions. Steroids. 2014;90:39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cadepond F, Ulmann A, Baulieu EE. RU486 (mifepristone): mechanisms of action and clinical uses. Annu Rev Med. 1997;48:129–56.

    Article  CAS  PubMed  Google Scholar 

  25. Vegeto E, Allan GF, Schrader WT, Tsai MJ, McDonnell DP, O’Malley BW. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell. 1992;69(4):703–13.

    Article  CAS  PubMed  Google Scholar 

  26. Benhamou B, Garcia T, Lerouge T, Vergezac A, Gofflo D, Bigogne C, Chambon P, Gronemeyer H. A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science. 1992;255(5041):206–9.

    Article  CAS  PubMed  Google Scholar 

  27. Leonhardt SA, Edwards DP. Mechanism of action of progesterone antagonists. Exp Biol Med (Maywood). 2002;227(11):969–80.

    CAS  Google Scholar 

  28. Oñate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270(5240):1354–7.

    Article  PubMed  Google Scholar 

  29. Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol. 1999;13(6):910–24.

    Article  CAS  PubMed  Google Scholar 

  30. Rothchild I. The corpus luteum revisited: are the paradoxical effects of RU486 a clue to how progesterone stimulates its own secretion? Biol Reprod. 1996;55(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  31. Meyer ME, Pornon A, Ji JW, Bocquel MT, Chambon P, Gronemeyer H. Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J. 1990;9(12):3923–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Conneely OM, Lydon JP. Progesterone receptors in reproduction: functional impact of the A and B isoforms. Steroids. 2000;65(10-11):571–7.

    Article  CAS  PubMed  Google Scholar 

  33. Rekawiecki R, Kowalik MK, Kotwica J. Onapristone (ZK299) and mifepristone (RU486) regulate the messenger RNA and protein expression levels of the progesterone receptor isoforms A and B in the bovine endometrium. Theriogenology. 2015;84(3):348–57.

    Article  CAS  PubMed  Google Scholar 

  34. Ottander U, Hosokawa K, Liu K, Bergh A, Ny T, Olofsson JI. A putative stimulatory role of progesterone acting via progesterone receptors in the steroidogenic cells of the human corpus luteum. Biol Reprod. 2000;62(3):655–63.

    Article  CAS  PubMed  Google Scholar 

  35. Rekawiecki R, Kowalik MK, Kotwica J. Cloning and expression of progesterone receptor isoforms A and B in bovine corpus luteum. Reprod Fertil Dev. 2014;67:215–25

    Google Scholar 

  36. Misao R, Nakanishi Y, Iwagaki S, Fujimoto J, Tamaya T. Expression of progesterone receptor isoforms in corpora lutea of human subjects: correlation with serum oestrogen and progesterone concentrations. Mol Hum Reprod. 1998;4(11):1045–52.

    Article  CAS  PubMed  Google Scholar 

  37. Sakumoto R, Vermehren M, Kenngott RA-M, Okuda K, Sinowatz F. Changes in the levels of progesterone receptor mRNA and protein in the bovine corpus luteum during the estrous cycle. J Reprod Dev. 2010;56(2):219–22.

    Article  CAS  PubMed  Google Scholar 

  38. Cassar CA, Dow MPD, Pursley JR, Smith GW. Effect of the preovulatory LH surge on bovine follicular progesterone receptor mRNA expression. Domest Anim Endocrinol. 2002;22(3):179–87.

    Article  CAS  PubMed  Google Scholar 

  39. Okuda K, Miyamoto A, Sauerwein H, Schweigert FJ, Schams D. Evidence for oxytocin receptors in cultured bovine luteal cells. Biol Reprod. 1992;46(6):1001–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kotwica J, Rekawiecki R, Duras MA. Stimulatory influence of progesterone on its own synthesis in bovine corpus luteum. Bull Vet Inst Pulawy. 2004;48(2):139–46.

    Google Scholar 

  41. Rekawiecki R, Nowik M, Kotwica J. Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins Other Lipid Mediat. 2005;78(1-4):169–84.

    Article  CAS  PubMed  Google Scholar 

  42. Rekawiecki R, Kotwica J. Molecular regulation of progesterone synthesis in the bovine corpus luteum. Vet Med (Praha). 2007;52(9):405–12.

    CAS  Google Scholar 

  43. Rekawiecki R, Kotwica J. Involvement of progesterone, oxytocin, and noradrenaline in the molecular regulation of steroidogenesis in the corpus luteum of the cow. Bull Vet Inst Pulawy. 2008;52:573–80.

    Google Scholar 

  44. Rekawiecki R, Kowalik MK, Kotwica J. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium. Reprod Fertil Dev. 2014;67:215–25

    Google Scholar 

  45. Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80(1):1–29.

    CAS  PubMed  Google Scholar 

  46. Laven RA, Peters AR. Bovine retained placenta: aetiology, pathogenesis and economic loss. Vet Rec. 1996;139(19):465–71.

    Article  CAS  PubMed  Google Scholar 

  47. Krzymowski T, Stefańczyk-Krzymowska S. The oestrous cycle and early pregnancy--a new concept of local endocrine regulation. Vet J. 2004;168(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  48. Graham JD, Yager ML, Hill HD, Byth K, O’Neill GM, Clarke CL. Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol. 2005;19(11):2713–35.

    Article  CAS  PubMed  Google Scholar 

  49. Auletta FJ, Kelm LB, Schofield MJ. Responsiveness of the corpus luteum of the rhesus monkey (Macaca mulatta) to gonadotrophin in vitro during spontaneous and prostaglandin F2 alpha-induced luteolysis. J Reprod Fertil. 1995;103(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  50. Duffy DM, Wells TR, Haluska GJ, Stouffer RL. The ratio of progesterone receptor isoforms changes in the monkey corpus luteum during the luteal phase of the menstrual cycle. Biol Reprod. 1997;57(4):693–9.

    Article  CAS  PubMed  Google Scholar 

  51. Grazzini E, Guillon G, Mouillac B, Zingg HH. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392(6675):509–12.

    Article  CAS  PubMed  Google Scholar 

  52. Peluso JJ. Multiplicity of progesterone actions and receptors in the mammalian ovary. Biol Reprod. 2006;75(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lösel RM, Besong D, Peluso JJ, Wehling M. Progesterone receptor membrane component 1--many tasks for a versatile protein. Steroids. 2008;73(9-10):929–34.

    Article  PubMed  Google Scholar 

  54. Falkenstein E, Meyer C, Eisen C, Scriba PC, Wehling M. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun. 1996;229(1):86–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kelly MJ, Levin ER. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab. 2001;12(4):152–6.

    Article  CAS  PubMed  Google Scholar 

  56. Cahill MA. Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol. 2007;105(1-5):16–36.

    Article  CAS  PubMed  Google Scholar 

  57. Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update. 2009;15(1):119–38.

    Article  CAS  PubMed  Google Scholar 

  58. Dressing GE, Goldberg JE, Charles NJ, Schwertfeger KL, Lange CA. Membrane progesterone receptor expression in mammalian tissues: a review of regulation and physiological implications. Steroids. 2011;76(1-2):11–7.

    Article  CAS  PubMed  Google Scholar 

  59. Bogacki M, Silvia WJ, Rekawiecki R, Kotwica J. Direct inhibitory effect of progesterone on oxytocin-induced secretion of prostaglandin F(2alpha) from bovine endometrial tissue. Biol Reprod. 2002;67(1):184–8.

    Article  CAS  PubMed  Google Scholar 

  60. Duras M, Mlynarczuk J, Kotwica J. Non-genomic effect of steroids on oxytocin-stimulated intracellular mobilization of calcium and on prostaglandin F2alpha and E2 secretion from bovine endometrial cells. Prostaglandins Other Lipid Mediat. 2005;76(1-4):105–16.

    Article  CAS  PubMed  Google Scholar 

  61. Kowalik MK, Slonina D, Kotwica J. Genomic and non-genomic effects of progesterone and pregnenolone on the function of bovine endometrial cells. Vet Med. 2009;54(5):205–14.

    CAS  Google Scholar 

  62. Slonina D, Kowalik MK, Subocz M, Kotwica J. The effect of ovarian steroids on oxytocin-stimulated secretion and synthesis of prostaglandins in bovine myometrial cells. Prostaglandins Other Lipid Mediat. 2009;90(3-4):69–75.

    Article  CAS  PubMed  Google Scholar 

  63. Boonyaratanakornkit V, McGowan E, Sherman L, Mancini MA, Cheskis BJ, Edwards DP. The role of extranuclear signaling actions of progesterone receptor in mediating progesterone regulation of gene expression and the cell cycle. Mol Endocrinol. 2007;21(2):359–75.

    Article  CAS  PubMed  Google Scholar 

  64. Gimpl G, Fahrenholz F. Cholesterol as stabilizer of the oxytocin receptor. Biochim Biophys Acta. 2002;1564(2):384–92.

    Article  CAS  PubMed  Google Scholar 

  65. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625–30.

    Article  CAS  PubMed  Google Scholar 

  66. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624–32.

    Article  CAS  PubMed  Google Scholar 

  67. Raza FS, Takemori H, Tojo H, Okamoto M, Vinson GP. Identification of the rat adrenal zona fasciculata/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. Eur J Biochem. 2001;268(7):2141–7.

    Article  CAS  PubMed  Google Scholar 

  68. Peluso JJ, Liu X, Gawkowska A, Johnston-MacAnanny E. Progesterone activates a progesterone receptor membrane component 1-dependent mechanism that promotes human granulosa/luteal cell survival but not progesterone secretion. J Clin Endocrinol Metab. 2009;94(7):2644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krebs CJ, Jarvis ED, Chan J, Lydon JP, Ogawa S, Pfaff DW. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc Natl Acad Sci USA. 2000;97(23):12816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang L, Kanda Y, Roberts DJ, Ecker JL, Losel R, Wehling M, Peluso JJ, Pru JK. Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA binding protein in uterine and placental tissues of the mouse and human. Mol Cell Endocrinol. 2008;287(1-2):81–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sasson R, Rimon E, Dantes A, Cohen T, Shinder V, Land-Bracha A, Amsterdam A. Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signalling and protein kinases. Mol Hum Reprod. 2004;10(5):299–311.

    Article  CAS  PubMed  Google Scholar 

  72. McRae RS, Johnston HM, Mihm M, O’Shaughnessy PJ. Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology. 2005;146(1):309–17.

    Article  CAS  PubMed  Google Scholar 

  73. Cai Z, Stocco C. Expression and regulation of progestin membrane receptors in the rat corpus luteum. Endocrinology. 2005;146(12):5522–32.

    Article  CAS  PubMed  Google Scholar 

  74. Luciano AM, Corbani D, Lodde V, Tessaro I, Franciosi F, Peluso JJ, Modina S. Expression of progesterone receptor membrane component-1 in bovine reproductive system during estrous cycle. Eur J Histochem. 2011;55(3), e27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kowalik MK, Rekawiecki R, Kotwica J. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy. Theriogenology. 2014;82(8):1086–93.

    Article  CAS  PubMed  Google Scholar 

  76. Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther. 2009;121(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  77. Hughes AL, Powell DW, Bard M, Eckstein J, Barbuch R, Link AJ, Espenshade PJ. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 2007;5(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  78. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25(23):2436–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luciano AM, Lodde V, Franciosi F, Ceciliani F, Peluso JJ. Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development. Reproduction. 2010;140(5):663–72.

    Article  PubMed  Google Scholar 

  80. Peluso JJ, Romak J, Liu X. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone’s antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology. 2008;149(2):534–43.

    Article  CAS  PubMed  Google Scholar 

  81. Peluso JJ, Liu X, Gawkowska A, Lodde V, Wu CA. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320(1-2):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Engmann L, Losel R, Wehling M, Peluso JJ. Progesterone regulation of human granulosa/luteal cell viability by an RU486-independent mechanism. J Clin Endocrinol Metab. 2006;91(12):4962–8.

    Article  CAS  PubMed  Google Scholar 

  83. Wendler A, Wehling M. PGRMC2, a yet uncharacterized protein with potential as tumor suppressor, migration inhibitor, and regulator of cytochrome P450 enzyme activity. Steroids. 2013;78(6):555–8.

    Article  CAS  PubMed  Google Scholar 

  84. Keator CS, Mah K, Slayden OD. Alterations in progesterone receptor membrane component 2 (PGRMC2) in the endometrium of macaques afflicted with advanced endometriosis. Mol Hum Reprod. 2012;18(6):308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Slonina D, Kowalik MK, Kotwica J. Expression of progesterone receptor membrane component 1, serpine mRNA binding protein 1 and nuclear progesterone receptor isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy. J Reprod Dev. 2012;58(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  86. Kowalik MK, Slonina D, Rekawiecki R, Kotwica J. Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the estrous cycle and the first trimester of pregnancy. Reprod Biol. 2013;13(1):15–23.

    Article  PubMed  Google Scholar 

  87. Saint-Dizier M, Sandra O, Ployart S, Chebrout M, Constant F. Expression of nuclear progesterone receptor and progesterone receptor membrane components 1 and 2 in the oviduct of cyclic and pregnant cows during the post-ovulation period. Reprod Biol Endocrinol. 2012;10:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shankar R, Johnson MP, Williamson NA, Cullinane F, Purcell AW, Moses EK, Brennecke SP. Molecular markers of preterm labor in the choriodecidua. Reprod Sci. 2010;17(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  89. Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA. 2003;100(5):2237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fernandes MS, Pierron V, Michalovich D, Astle S, Thornton S, Peltoketo H, et al. Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J Endocrinol. 2005;187(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  91. Karteris E, Zervou S, Pang Y, Dong J, Hillhouse EW, Randeva HS, Thomas P. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol. 2006;20(7):1519–34.

    Article  CAS  PubMed  Google Scholar 

  92. Qiu HB, Lu SS, Ji KL, Song XM, Lu YQ, Zhang M, Lu KH. Membrane progestin receptor beta (mPR-beta): a protein related to cumulus expansion that is involved in in vitro maturation of pig cumulus-oocyte complexes. Steroids. 2008;73(14):1416–23.

    Article  CAS  PubMed  Google Scholar 

  93. Nutu M, Weijdegård B, Thomas P, Thurin-Kjellberg A, Billig H, Larsson DJ. Distribution and hormonal regulation of membrane progesterone receptors β and γ in ciliated epithelial cells of mouse and human fallopian tubes. Reprod Biol Endocrinol. 2009;7(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ashley RL, Clay CM, Farmerie TA, Niswender GD, Nett TM. Cloning and characterization of an ovine intracellular seven transmembrane receptor for progesterone that mediates calcium mobilization. Endocrinology. 2006;147(9):4151–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ashley RL, Arreguin-Arevalo JA, Nett TM. Binding characteristics of the ovine membrane progesterone receptor alpha and expression of the receptor during the estrous cycle. Reprod Biol Endocrinol. 2009;7:42.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Duras M, Brzósko E, Kotwica J. Influence of progesterone, pregnenolone and 17-beta-hydroxyprogesterone on the function of bovine luteal cells treated with luteinizing hormone, noradrenaline and prostaglandin E2. Pol J Vet Sci. 2005;8(2):113–9.

    CAS  PubMed  Google Scholar 

  97. Mlynarczuk J, Sasiadek J, Kotwica J. Non-genomic action of progesterone in cultured bovine luteal and endometrial epithelial cells. Bull Vet Inst Pulawy. 2005;49(2):193–8.

    Google Scholar 

  98. Kowalik MK, Kotwica J. Progesterone receptor membrane component 1 (PGRMC1) gene expression in corpus luteum during the estrous cycle in cows. Reprod Biol. 2008;8(3):291–7.

    Article  PubMed  Google Scholar 

  99. Min L, Takemori H, Nonaka Y, Katoh Y, Doi J, Horike N, Osamu H, Raza FS, Vinson GP, Okamoto M. Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis. Mol Cell Endocrinol. 2004;215(1-2):143–8.

    Article  CAS  PubMed  Google Scholar 

  100. Albrecht C, Huck V, Wehling M, Wendler A. In vitro inhibition of SKOV-3 cell migration as a distinctive feature of progesterone receptor membrane component type 2 versus type 1. Steroids. 2012;77(14):1543–50.

    Article  CAS  PubMed  Google Scholar 

  101. Suchanek M, Radzikowska A, Thiele C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods. 2005;2(4):261–7.

    Article  CAS  PubMed  Google Scholar 

  102. Wu W, Shi S-Q, Huang H-J, Balducci J, Garfield RE. Changes in PGRMC1, a potential progesterone receptor, in human myometrium during pregnancy and labour at term and preterm. Mol Hum Reprod. 2011;17(4):233–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ research was supported by the National Science Centre (2012/05/B/NZ4/01810) the Ministry of Science and Higher Education (N311 113638) and the Polish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kotwica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rekawiecki, R., Kowalik, M.K., Kotwica, J. (2017). Steroid Hormone Receptors in the Corpus Luteum. In: Meidan, R. (eds) The Life Cycle of the Corpus Luteum. Springer, Cham. https://doi.org/10.1007/978-3-319-43238-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43238-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43236-6

  • Online ISBN: 978-3-319-43238-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics