Skip to main content

Nitrogenous Waste Metabolism Within Terrestrial Crustacea, with Special Reference to Purine Deposits and Their Metabolism

  • Chapter
  • First Online:

Abstract

Crustaceans (decapods, isopods and amphipods) are recent colonists of land and range from amphibious to terrestrial species. The majority of terrestrial crustaceans, like their aquatic ancestors, have retained ammonotely. Amphibious species periodically return to standing pools of water to excrete ammonia, via the gills. In more terrestrial species, ammonia is eliminated in either an excretory fluid such as urine or P or volatilised as a gas. Due to the potential toxicity of ammonia, waste nitrogen is stored as transaminated amino acids such as glutamate, glutamine and glycine, between excretory bouts. Only one species, Birgus latro is known to be primarily purinotelic, producing a white faecal pellet of guanine and uric acid. Numerous terrestrial isopod and decapod crustaceans do, however, possess solid purine deposits of urate which are stored intracellularly within spongy connective tissue cells. The urate is synthesised de novo from excess dietary nitrogen. The deposits have been suggested to function as either storage excretion or to act as a temporary nitrogen store. In decapod crustaceans, there is substantial evidence against the temporary nitrogen store hypothesis since the urate is not degraded and utilised during negative nitrogen balance or during situations of high nitrogen demand such as oogenesis and moulting. Indeed it appears that herbivorous gecarcinid land crabs do not require a nitrogen store since they can meet their nitrogen requirements from a leaf litter diet. The location of the uricolytic enzymes in decapods suggests that the urate deposits may represent long-term storage of nitrogenous wastes. In isopods, the urate appears not to function as either a nitrogen store or storage excretion of nitrogenous wastes. In this group, it could act as a cation store during dehydration or as an antioxidant to prevent oxidative tissue damage. However, conditions which induce urate catabolism have yet to be conclusively demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aylward GH, Findlay TJV (1971) SI chemical data. John Wiley and Sons, Gladesville

    Google Scholar 

  • Bancroft JD (1975) Histochemical techniques. Butterworths, London

    Google Scholar 

  • Battison AL (2013) Subcuticular urate accumulation in an American lobster (Homarus americanus). Vet Pathol 50(3):451–456

    Google Scholar 

  • Becker BF (1993) Towards the physiological function of uric acid. Free Radical Biol Med 14(6):615–631

    Article  CAS  Google Scholar 

  • Berg J, Tymoczko J, Stryer L, Gatto GJ (2012) Biochemistry, 7th edn. Freeman and Company, New York

    Google Scholar 

  • Bishop J (1963) The Australian freshwater crabs of the family Potamonidae (Crustacea: Decapoda). Mar Freshw Res 14(2):218–238

    Article  Google Scholar 

  • Broly P, Deville P, Maillet S (2013) The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evol Ecol 27:461–476

    Article  Google Scholar 

  • Campbell JW (1995) Excretory nitrogen metabolism in reptiles and birds. In: Walsh PJ, Wright P (eds) Nitrogen metabolism and excretion. CRC Press, Boca Raton, pp 147–178

    Google Scholar 

  • Cheng SY, Lee WC, Chen JC (2004) Increase of uricogenesis in the kuruma shrimp Marsupenaeus japonicus reared under hyper-osmotic conditions. Comp Biochem Physiol B Biochem Mol Biol 138(3):245–253

    Google Scholar 

  • Cheng SY, Lee WC, Chen JC (2005) An increase of uricogenesis in the kuruma shrimp Marsupenaeus japonicus under nitrite stress. J Exp Zool A Comp Exp Biol 303(4):308–318

    Google Scholar 

  • Chew SF, Ip YK (2014) Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. J Fish Biol 84(3):603–638

    Article  PubMed  CAS  Google Scholar 

  • Claybrook DL (1983) Nitrogen metabolism. In: Mantel LH (ed) The biology of crustacea, volume 5 internal anatomy and physiological regulation, vol 5. Academic, New York, pp 163–213

    Chapter  Google Scholar 

  • Dall W, Moriarty DJ (1983) Functional aspects of nutrition and digestion. In: Mantel LH (ed) The biology of crustacea, vol 5. Academic, New York, pp 215–261

    Google Scholar 

  • Davie PJF (2002) Crustacea: Malacostraca: Eucarida (Part 2): Decapoda- Anomura, Brachyura. In: Wells A, Houston WWK (eds) Zoological catalogue of Australia, vol 19.3B. CSIRO Publishing, Melbourne, p xiv 641

    Google Scholar 

  • De Vries MC, Wolcott DL (1993) Gaseous ammonia evolution is coupled to reprocessing of urine at the gills of ghost crabs. J Exp Zool 267(2):97–103

    Article  Google Scholar 

  • De Vries MC, Wolcott DL, Holliday CW (1994) High ammonia and low pH in the urine of the ghost crab, Ocypode quadrata. Biol Bull 186(3):342–348

    Google Scholar 

  • Dela-Cruz J, Morris S (1997a) Respiratory, acid–base, and metabolic responses of the Christmas Island blue crab, Cardisoma hirtipes (Dana), during simulated environmental conditions. Physiol Zool 70(1):100–115

    Google Scholar 

  • Dela-Cruz J, Morris S (1997b) Water and ion balance and nitrogenous excretion as limitations to terrestrial excursion in the Christmas Island Blue Crab, Cardisoma hirtipes (Dana). J Exp Zool 279(6):537–548

    Google Scholar 

  • Della Corte E, Stirpe F (1968) The regulation of rat-liver xanthine oxidase: activation by proteolytic enzymes. FEBS Lett 2(2):83–84

    Article  PubMed  CAS  Google Scholar 

  • Della Corte E, Stirpe F (1972) The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Bio J 126:739–745

    CAS  Google Scholar 

  • Dillaman RM, Greenaway P, Linton SM (1999) Role of the midgut gland in purine excretion in the robber crab, Birgus latro (Anomura: Coenobitidae). J Morphol 241(3):227–235

    Google Scholar 

  • Dresel EIB, Moyle V (1950) Nitrogenous excretion of amphipods and isopods. J Exp Zool 27(2):210–225

    CAS  Google Scholar 

  • Drew MM, Smith MJ, Hansson BS (2013) Factors influencing growth of giant terrestrial robber crab Birgus latro (Anomura: Coenobitidae) on Christmas Island. Aquat Biol 19(2):129–141

    Google Scholar 

  • Durand F, Regnault M (1998) Nitrogen metabolism of two portunid crabs, Carcinus maenas and Necora puber, during prolonged air exposure and subsequent recovery: a comparative study. J Exp Zool 201(17):2515–2528

    Google Scholar 

  • Durand F, Chausson F, Regnault M (1999) Increases in tissue free amino acid levels in response to prolonged emersion in marine crabs: an ammonia-detoxifying process efficient in the intertidal Carcinus maenas but not in the subtidal Necora puber. J Exp Zool 202(16):2191–2202

    Google Scholar 

  • Gifford CA (1968) Accumulation of uric acid in the land crab, Cardisoma guanhumi. Am Zool 8(3):521–528

    Google Scholar 

  • Giraud-Billoud M, Abud MA, Cueto JA, Vega IA, Castro-Vazquez A (2011) Uric acid deposits and estivation in the invasive apple-snail, Pomacea canaliculata. Comp Biochem Physiol B Biochem Mol Biol 158(4):506–512

    Google Scholar 

  • Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA (2005) Uric acid and oxidative stress. Curr Pharm Des 11:4145–4151

    Article  PubMed  CAS  Google Scholar 

  • Graf F, Michaut P (1975) Chronologie du développement et évolution du stockage de calcium et des cellules à urates chez Niphargus schellenbergi Karaman. Int J Speleol 7:247–272

    Article  Google Scholar 

  • Green PT (2004) Field observations of moulting and moult increment in the red land crab, Gecarcoidea natalis (Brachyura, Gecarcinidae), on Christmas Island (Indian Ocean). Crustaceana 77(1):125–128

    Article  Google Scholar 

  • Green JW, Harsch M, Barr L, Prosser CL (1959) The regulation of water and salt by fiddler crab, Uca pugnax and Uca pugilator. Biol Bull 116(1):76–87

    Article  CAS  Google Scholar 

  • Greenaway P (1984) Survival strategies in desert crabs. In: Cogger HG, Cameron E (eds) Arid Australia. Australian Museum, Sydney, pp 145–152

    Google Scholar 

  • Greenaway P (1989) Sodium balance and adaptation to fresh water in the amphibious crab Cardisoma hirtipes. Physiol Zool 62(3):639–653

    Article  Google Scholar 

  • Greenaway P (1991) Nitrogenous excretion in aquatic and terrestrial crustaceans. Mem Queensland Mus 31:215–227

    Google Scholar 

  • Greenaway P (1994) Salt and water balance in field populations of the terrestrial crab, Gecarcoidea natalis. J Crustacean Biol 14(3):438–453

    Article  Google Scholar 

  • Greenaway P, Morris S (1989) Adaptations to a terrestrial existence by the robber crab, Birgus latro. L. III. Nitrogenous excretion. J Exp Biol 143(1):333–346

    Google Scholar 

  • Greenaway P, Nakamura T (1991) Nitrogenous excretion in two terrestrial crabs Gecarcoidea natalis and Geograpsus grayi. Physiol Zool 64:767–786

    Article  CAS  Google Scholar 

  • Greenaway P, Raghaven S (1998) Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest. Physiol Zool 71(1):36–44

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein R (1968) Nitrogen metabolism in the terrestrial isopod Oniscus asellus. Am Zool 8:507–519

    Google Scholar 

  • Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 6–54

    Google Scholar 

  • Henry RP, Cameron JN (1981) A survey of blood and tissue nitrogen compounds in terrestrial decapods of Palau. Journal of Experimental Zoology 218 (1):83–88. doi:10.1002/jez.1402180110

    Google Scholar 

  • Henry RP, Cameron JN (1982) The distribution and partial characterization of carbonic anhydrase in selected aquatic and terrestrial decapod crustaceans. J Exp Zool 221:309–321

    Article  CAS  Google Scholar 

  • Hooper DC (2000) Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 14(5):691–698

    PubMed  CAS  Google Scholar 

  • Horne FR (1968) Nitrogen excretin in crustacea-I. The herbivorous land crab Cardisoma guanhumi latreille. Comp Biochem Physiol 26(2):687–695

    Article  PubMed  CAS  Google Scholar 

  • Hyatt AD, Marshall AT (1985a) Water and ion balance in the tissues of the dehydrated cockroach, Periplaneta americana. J Insect Physiol 31(1):27–34

    Article  CAS  Google Scholar 

  • Hyatt AD, Marshall AT (1985b) X-ray microanalysis of cockroach fat body in relation to ion and water regulation. J Insect Physiol 31(6):495–508

    Article  CAS  Google Scholar 

  • Ichikawa M, Nishino T, Nishino T, Ichikawa A (1992) Subcellular localization of xanthine oxidase in rat hepatocytes: high-resolution immunoelectron microscopic study combined with biochemical analysis. J Histochem Cytochem 40(8):1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Johnson PT (1980) Histology of the blue crab, Callinectes sapidus. A model for the decapoda. Praeger, New York

    Google Scholar 

  • Kirby PK, Harbaugh RD (1974) Diurnal patterns of ammonia release in marine and terrestrial isopods. Comp Biochem Physiol A Physiol 47(4):1313–1322

    Article  CAS  Google Scholar 

  • Kooij A (1994) A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. Histochem J 26(12):889–915

    Article  PubMed  CAS  Google Scholar 

  • Lallier FH, Walsh PJ (1991) Activities of uricase, xanthine oxidase, and xanthine dehydrogenase in the hepatopancreas of aquatic and terrestrial crabs. J Crustacean Biol 11(4):506–512

    Article  Google Scholar 

  • Linton SM, Greenaway P (1995) Nitrogenous excretion in the amphibious crab Holthuisana transversa under wet and dry conditions. J Crustacean Biol 15(4):633–644

    Article  Google Scholar 

  • Linton SM, Greenaway P (1997a) Intracellular purine deposits in the gecarcinid land crab, Gecarcoidea natalis. J Morphol 231:101–110

    Article  CAS  Google Scholar 

  • Linton SM, Greenaway P (1997b) Urate deposits in the Gecarcinid land crab, Gecarcoidea natalis are synthesised de novo from excess dietary nitrogen. J Exp Zool 200:2347–2354

    CAS  Google Scholar 

  • Linton SM, Greenaway P (1998) Enzymes of urate synthesis and catabolism in the Gecarcinid land crab Gecarcoidea natalis. Exper Biol Online 3:5

    Article  Google Scholar 

  • Linton SM, Greenaway P (2000) The nitrogen requirements and dietary nitrogen utilization for the gecarcinid land crab, Gecarcoidea natalis. Physiol Biochem Zool 73(2):209–218

    Article  PubMed  CAS  Google Scholar 

  • Linton S, Wilde JE, Greenaway P (2005) Excretory and storage purines in the anomuran land crab Birgus latro: guanine and uric acid. J Crustacean Biol 25(1):100–104

    Article  Google Scholar 

  • Liras A, Rotllán P, Llorente P (1992) De novo purine biosynthesis in the crustacean Artemia: influence of salinity and geographical origin. J Comp Physiol B 162(3):263–266

    Article  PubMed  CAS  Google Scholar 

  • Little C (1983) The colonisation of land. Origins and adaptations of terrestrial animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Lockwood APM (1959) The extra-haemolymph sodium of Asellus aquaticus (L.) J Exp Biol 36:562–565

    Google Scholar 

  • MacMillen RE, Greenaway P (1978) Adjustments of energy and water metabolism to drought in an Australian arid-zone crab. Physiol Zool 51(3):230–240

    Article  Google Scholar 

  • McNabb RA, McNabb FMA (1977) Avian urinary precipitates: their physical analysis, and their differential inclusion of cations (Ca, Mg) and anions (Cl). Comp Biochem Physiol 56A:621–625

    Article  Google Scholar 

  • Moran LA, Horton RA, Scrimgeour G, Perry M (2014) Principles of biochemistry (Pearson New International Edition). Pearson Essex, UK

    Google Scholar 

  • Morris S, Van Aardt WJ (1998) Salt and water relations, and nitrogen excretion, in the amphibious African freshwater crab Potamonautes warreni in water and in air. J Exp Zool 201(6):883–893

    Google Scholar 

  • Mykles DL (1992) Getting out of a tight squeeze: enzymatic regulation of claw muscle atrophy in molting. Am Zool 32(3):485–494

    Article  CAS  Google Scholar 

  • Mykles DL, Skinner DM (1990) Atrophy of crustacean somatic muscle and the proteinases that do the job. A review. J Crustacean Biol 10(4):577–594

    Article  Google Scholar 

  • Nakamura M, Wright J (2013) Discontinuous ammonia excretion and glutamine storage in littoral Oniscidea (Crustacea: Isopoda): testing tidal and circadian models. J Comp Physiol B 183(1):51–59

    Google Scholar 

  • Newsholme EA, Leech AR (1983) Biochemistry for the medical sciences. Wiley, Chichester

    Google Scholar 

  • Ng PKL, Davie PJF (2012) The blue crab of Christmas Island, Discoplax celeste, new species (Crustacea: Decapoda: Brachyura: Gecarcinidae). Raffles Bulletin Zool 60(1):89–100

    Google Scholar 

  • O’Donnell MJ, Wright JC (1995) Nitrogen excretion in terrestrial crustaceans. In: Walsh PJ, Wright P (eds) Nitrogen metabolism and excretion. CRC Press, Boca Raton, pp 105–118

    Google Scholar 

  • Porter P (1963) Physico-chemical factors involved in urate calculus formation. Res Vet Sci 4:580–591

    CAS  Google Scholar 

  • Sato T, Yoseda K, Abe O, Shibuno T, Takada Y, Dan S, Hamasaki K (2013) Growth of the coconut crab Birgus latro estimated from mark-recapture using passive integrated transponder (PIT) tags. Aquat Biol 19(2):143–152

    Article  Google Scholar 

  • Seegmiller JE (1980) Diseases of purine and pyrimidine metabolism. In: Bondy PK, Rosenburg LE (eds) Metabolic control and disease. Sauders and Company, Philadelphia, pp 777–937

    Google Scholar 

  • Skinner DM (1966) Breakdown and reformation of somatic muscle during the molt cycle of the land crab, Gecarcinus lateralis. J Exper Zool 163(2):115–123

    Google Scholar 

  • Spicer JI, Moore PG, Taylor AC (1987) The physiological ecology of land invasion by the Talitridae (Crustacea: Amphipoda). P Royal Soc London B Biol Sci 232(1266):95–124

    Article  Google Scholar 

  • Taylor HH, Greenaway P (1994) The partitioning of water and solutes during evaporative water loss in three terrestrial crabs. Physiol Zool 67(3):539–565

    Article  Google Scholar 

  • Varley D, Greenaway P (1994) Nitrogenous excretion in the terrestrial carnivorous crab Geograpsus grayi: site and mechanism of excretion. J Exp Zool 190(1):179–193

    Google Scholar 

  • Vega IA, Giraud-Billoud M, Koch E, Gamarra-Luques C, Castro-Vazquez A (2007) Uric acid accumulation within intracellular crystalloid corpuscles of the midgut gland in Pomacea canaliculata (Caenogastropoda, Ampullariidae). Veliger 48(4):276–283

    Google Scholar 

  • Wägele JW (1992) Isopoda. In: Microscopic anatomy of invertebrates, volume 9 crustacea. Wiley-Liss, New York, pp 529–617

    Google Scholar 

  • Wang Z, Königsberger E (1998) Solubility equilibria in the uric acid–sodium urate–water system12. Thermochimica Acta 310(1–2):237–242

    Article  CAS  Google Scholar 

  • Weihrauch D, Morris S, Towle DW (2004) Ammonia excretion in aquatic and terrestrial crabs. J Exp Zool 207:4491–4504

    CAS  Google Scholar 

  • Wieser W (1972a) Oxygen consumption and ammonia excretion in Ligia beaudiana M.-E. Comp Biochem Physiol 43A:869–876

    Google Scholar 

  • Wieser W (1972b) A glutaminase in the body wall of terrestrial isopods. Nature 239(5370):288–290

    Article  CAS  Google Scholar 

  • Wieser W, Schweizer G (1970) A re-examination of the excretion of nitrogen by terrestrial isopods. J Exp Zool 52(2):267–274

    Google Scholar 

  • Wieser W, Schweizer G, Hartenstein R (1969) Patterns in the release of gaseous ammonia by terrestrial isopods. Oecologia 3(3–4):390–400

    Article  Google Scholar 

  • Wolcott TG (1988) Ecology. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge

    Google Scholar 

  • Wolcott DL (1991) Nitrogen excretion is enhanced during urine recycling in two species of terrestrial crab. J Exper Zool 259(2):181–187

    Article  Google Scholar 

  • Wolcott DL, Wolcott TG (1984) Food quality and cannibalism in the red land crab Gecarcinus lateralis. Physiol Zool 57(3):318–324

    Article  Google Scholar 

  • Wolcott DL, Wolcott TG (1987) Nitrogen limitation in the herbivorous land crab Cardisoma guanhumi. Physiol Zool 60(2):262–268

    Article  Google Scholar 

  • Wood CM, Boutilier RG (1985) Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: a field and laboratory study. Biol Bull 169(1):267–290

    Article  Google Scholar 

  • Wood CM, Boutilier RG, Randall DJ (1986) The physiology of dehydration stress in the land crab, Cardisoma carnifex: respiration, ionoregulation, acid–base balance and nitrogenous waste excretion. J Exp Zool 126(1):271–296

    Google Scholar 

  • Wright JC, Machin J (1990) Water vapour absorption in terrestrial isopods. J Exp Zool 154(1):13–30

    Google Scholar 

  • Wright JC, O’Donnell MJ (1992) Osmolality and electrolyte composition of pleon fluid in Porcellio scaber (Crustacea, Isopoda, Oniscidea): implications for water vapour absorption. J Exp Zool 164(1):189–203

    Google Scholar 

  • Wright JC, O’Donnell MJ (1993) Total ammonia concentrations and pH of haemolymph, pleon fluid and maxillary urine in Porcellio scaber Lattreille (Isopoda, Oniscidea): relationships to ambient humidity and water vapour uptake. J Exp Biol 176(1):233–246

    CAS  Google Scholar 

  • Wright J, Peña-Peralta M (2005) Diel variation in ammonia excretion, glutamine levels, and hydration status in two species of terrestrial isopods. J Comp Physiol B 175(1):67–75

    Article  PubMed  CAS  Google Scholar 

  • Wright JC, O’Donnell MJ, Reichert J (1994) Effects of ammonia loading on Porcellio scaber; glutamine and glutamate synthesis, ammonia excretion and toxicity. J Exp Zool 188:143–157

    CAS  Google Scholar 

  • Wright JC, O’Donnell MJ and Sazgar, S (1997) Haemolymph osmoregulation and the fate of sodium and chloride during dehydration in terrestrial isopods. J Insect Physiol 43:795–807

    Google Scholar 

  • Wright JC, Caveney S, O’Donnell MJ, Reichert J (1996) Increases in tissue amino acid levels in response to ammonia stress in the terrestrial isopod, Porcellio scaber Latr. J Exp Zool 274:265–274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Linton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Linton, S.M., Wright, J.C., Howe, C.G. (2017). Nitrogenous Waste Metabolism Within Terrestrial Crustacea, with Special Reference to Purine Deposits and Their Metabolism. In: Weihrauch, D., O’Donnell, M. (eds) Acid-Base Balance and Nitrogen Excretion in Invertebrates. Springer, Cham. https://doi.org/10.1007/978-3-319-39617-0_2

Download citation

Publish with us

Policies and ethics