Skip to main content

MetaCompose: A Compositional Evolutionary Music Composer

  • Conference paper
  • First Online:
Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9596))

Abstract

This paper describes a compositional, extensible framework for music composition and a user study to systematically evaluate its core components. These components include a graph traversal-based chord sequence generator, a search-based melody generator and a pattern-based accompaniment generator. An important contribution of this paper is the melody generator which uses a novel evolutionary technique combining FI-2POP and multi-objective optimization. A participant-based evaluation overwhelmingly confirms that all current components of the framework combine effectively to create harmonious, pleasant and interesting compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cs.cinvestav.mx/~constraint/papers/.

References

  1. Papadopoulos, G., Wiggins, G.: Ai methods for algorithmic composition: a survey, a critical view and future prospects. In: AISB Symposium on Musical Creativity, Edinburgh, UK, pp. 110–117 (1999)

    Google Scholar 

  2. Konečni, V.J.: Does music induce emotion? A theoretical and methodological analysis. Psychol. Aesthetics Creativity Arts 2(2), 115 (2008)

    Article  Google Scholar 

  3. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation. IEEE Trans. Affect. Comput. 2(3), 147–161 (2011)

    Article  Google Scholar 

  4. Miranda, E.R.: Readings in Music and Artificial Intelligence, vol. 20. Routledge, New York (2013)

    Google Scholar 

  5. Wooller, R., Brown, A.R., Miranda, E., Diederich, J., Berry, R.: A framework for comparison of process in algorithmic music systems. In: Generative Arts Practice 2005 – A Creativity & Cognition Symposium (2005)

    Google Scholar 

  6. Robertson, J., de Quincey, A., Stapleford, T., Wiggins, G.: Real-time music generation for a virtual environment. In: Proceedings of ECAI-98 Workshop on AI/Alife and Entertainment, Citeseer (1998)

    Google Scholar 

  7. Smaill, A., Wiggins, G., Harris, M.: Hierarchical music representation for composition and analysis. Comput. Humanit. 27(1), 7–17 (1993)

    Article  Google Scholar 

  8. Loughran, R., McDermott, J., O’Neill, M.: Tonality driven piano compositions with grammatical evolution. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2168–2175. IEEE (2015)

    Google Scholar 

  9. Dahlstedt, P.: Autonomous evolution of complete piano pieces and performances. In: Proceedings of Music AL Workshop, Citeseer (2007)

    Google Scholar 

  10. Miranda, E.R., Biles, A.: Evolutionary Computer Music. Springer, London (2007)

    Book  Google Scholar 

  11. Rigopulos, A.P., Egozy, E.B.: Real-time music creation system, US Patent 5,627,335, 6 May 1997

    Google Scholar 

  12. Meier, S.K., Briggs, J.L.: System for real-time music composition and synthesis, US Patent 5,496,962, 5 March 1996

    Google Scholar 

  13. Livingstone, S.R., Brown, A.R.: Dynamic response: real-time adaptation for music emotion. In: Proceedings of the 2nd Australasian Conference on Interactive Entertainment, pp. 105–111 (2005)

    Google Scholar 

  14. Brown, D.: Mezzo: an adaptive, real-time composition program for game soundtracks. In: Proceedings of the AIIDE 2012 Workshop on Musical Metacreation, pp. 68–72 (2012)

    Google Scholar 

  15. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  17. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population (FI-2Pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Eur. J. Oper. Res. 190(2), 310–327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective evolutionary optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 284–298. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Chafekar, D., Xuan, J., Rasheed, K.: Constrained multi-objective optimization using steady state genetic algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 813–824. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Jimenez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K.: An evolutionary algorithm for constrained multi-objective optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 1133–1138. IEEE (2002)

    Google Scholar 

  21. Isaacs, A., Ray, T., Smith, W.: Blessings of maintaining infeasible solutions for constrained multi-objective optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 2780–2787. IEEE (2008)

    Google Scholar 

  22. Mugglin, S.: Chord charts and maps. http://mugglinworks.com/chordmaps/chartmaps.htm. Accessed 14 October 2015

  23. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Chichester (2001)

    MATH  Google Scholar 

  24. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  25. Scirea, M., Nelson, M.J., Togelius, J.: Moody music generator: characterising control parameters using crowdsourcing. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 200–211. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Scirea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Scirea, M., Togelius, J., Eklund, P., Risi, S. (2016). MetaCompose: A Compositional Evolutionary Music Composer. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2016. Lecture Notes in Computer Science(), vol 9596. Springer, Cham. https://doi.org/10.1007/978-3-319-31008-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31008-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31007-7

  • Online ISBN: 978-3-319-31008-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics