Skip to main content

Phenomenological Models of Photoinduced Transition in Spin-Crossover Materials

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

  • 652 Accesses

Abstract

The stochastic kinetics of photoinduced transition in spin-crossover systems, as representatives of synthetic molecular magnetic materials, was reviewed. The focus has been done on the macroscopic phenomenological models, which were described by dynamic potential in terms of Lyapunov functions and obeys to Langevin kinetics with white and colored stochastic processes. By corresponding Fokker–Planck equation was studied the evolution of probability of system states. For the system with light-induced transition which is additionally driven by external periodic force it has been shown the possibility of resonance enhancement of magnetization at certain values of the amplitude of periodic signal and noise intensity. The stochastic resonance phenomenon was analyzed by signal-to-noise ratio for Markovian and non-Markovian noise, various amplitudes and frequencies of periodic signal, and also variation of noise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cambi L, Gagnasso A (1931) Iron dithiocarbamates and nitrosodithiocarbamates. Atti Accad Naz Lincei 13:809–813

    Google Scholar 

  2. Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds I–III. Springer, Berlin

    Google Scholar 

  3. Gudyma Iu, Enachescu C, Maksymov A (2015) Kinetics of nonequilibrium transition in spin-crossover compounds. In: Fesenko O, Yatsenko L (eds) Nanocomposites, nanophotonics, nanobiotechnology, and applications. Springer, Cham, p. 375–401

    Google Scholar 

  4. Gudyma Iu, Maksymov A, Ivashko V (2015) Spin-crossover nanocrystals and ising model. In: Fesenko O, Yatsenko L (eds) Nanoplasmonics, nano-optics, nanocomposites, and surface studies. Springer, Cham, p 165–192

    Chapter  Google Scholar 

  5. König E, Madeja K (1967) 5T2-1A1 Equilibria in some iron(2)-bis (1, 10-phenanthroline) complexes. Inorg Chem 6:48–55

    Article  Google Scholar 

  6. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  7. Gudyma Iu, Ivashko V, Linares J (2014) Diffusionless phase transition with two order parameters in spin-crossover solids. J Appl Phys 116:173509

    Article  ADS  Google Scholar 

  8. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem Phys Lett 105:1–4

    Article  ADS  Google Scholar 

  9. Gudyma Iu, Maksymov A (2012) Optically induced switching in spin-crossover compounds: microscopic and macroscopic models and their relationship. Appl Opt 51:C55–C61

    Article  Google Scholar 

  10. Gudyma Yu, Semenko O (2004) Nonequilibrium kinetics in spin-crossover compounds. Phys Status Solidi B 241:370–376

    Article  ADS  Google Scholar 

  11. Gudyma Yu, Ivans’kii B (2006) Behavior of asymmetric bistable system under influence of cross-correlated noises. Mod Phys Lett B 20:1233–1239

    Article  MATH  Google Scholar 

  12. Gudyma AIu, Gudyma IuV (2010) Noise-induced collective regimes of complex system in contact with a random reservoir. Physica A 389:667–672

    Article  ADS  Google Scholar 

  13. Gudyma IuV, Maksymov AIu, Miyashita S (2011) Noise effects in a finite-size Ising-like model. Phys Rev E 84:031126

    Article  ADS  Google Scholar 

  14. Gudyma Iu, Maksymov A, Enachescu C (2014) Phase transition in spin-crossover compounds in the breathing crystal field model. Phys Rev B 89:224412

    Article  ADS  Google Scholar 

  15. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223–287

    Article  ADS  Google Scholar 

  16. McDonnell MD, Stocks N, Pearce C, Abbott D (2012) Stochastic resonance. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Boukheddaden K, Shteto I, Hoô B, Varret F (2000) Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach. Phys Rev B 62:14796–14805

    Article  ADS  Google Scholar 

  18. Boukheddaden K, Shteto I, Hoô B, Varret F (2000) Dynamical model for spin-crossover solids. II. Static and dynamic effects of light in the mean-field approach. Phys Rev B 62:14806–14817

    Article  ADS  Google Scholar 

  19. Varret F, Boukheddaden K, Chong C, Goujon A, Gillon B, Jeftic J, Hauser A (2007) Light-induced phase separation in the \( \left[Fe{(ptz)}_6\right]{\left(B{F}_4\right)}_2 \) spin-crossover single crystal. Europhys Lett 77:30007

    Article  ADS  Google Scholar 

  20. Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49:435–479

    Article  ADS  Google Scholar 

  21. Ma S-K (2000) Modern theory of critical phenomena. Westview Press, Boulder

    Google Scholar 

  22. Gudyma IuV, Maksymov AIu (2010) Theoretical analysis of the states of spin-crossover solids under cross-correlated noises. Physica B 405:2534–2537

    Article  ADS  Google Scholar 

  23. Horsthemke W, Lefever R (1984) Noise-induced transitions. Springer, Berlin

    MATH  Google Scholar 

  24. Hänggi P, Jung P, Marchesoni F (1989) Escape driven by strongly correlated noise. J Stat Phys 54:1367–1380

    Article  ADS  MathSciNet  Google Scholar 

  25. Jung P, Hänggi P (1987) Dynamical systems: a unified colored-noise approximation. Phys Rev A 35:4464–4466

    Article  ADS  Google Scholar 

  26. Gudyma Iu, Maksymov A (2011) High spin metastable state relaxation of spin-crossover solids driven by white noise. J Phys Chem Solids 72:73–77

    Article  ADS  Google Scholar 

  27. Fox RF, Lu Y-N (1993) Analytic and numerical study of stochastic resonance. Phys Rev E 48:3390–3398

    Article  ADS  Google Scholar 

  28. Evstigneev M, Reimann P, Pankov V, Prince RH (2004) Stochastic resonance in monostable overdamped system. Europhys Lett 65:7–12

    Article  ADS  Google Scholar 

  29. McNamara B, Wiesenfeld K (1989) Theory of stochastic resonance. Phys Rev A 39:4854–4869

    Article  ADS  Google Scholar 

  30. Mitaim S, Kosko B (1998) Adaptive stochastic resonance. Proc IEEE 86:2152–2183

    Article  Google Scholar 

  31. Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365:337–340

    Article  ADS  Google Scholar 

  32. Dunn T, Guerra DN, Mohanty P (2009) Noise color and asymmetry in stochastic resonance with silicon nanomechanical resonators. Eur Phys J B 69:5–10

    Article  ADS  Google Scholar 

  33. Tweten DJ, Mann BP (2014) Experimental investigation of colored noise in stochastic resonance of a bistable beam. Physica D 268:25–33

    Article  ADS  Google Scholar 

  34. Abbaspour H, Trebaol S, Morier-Genoud F, Portella-Oberli MT, Deveaud B (2014) Stochastic resonance in collective exciton-polariton excitations inside a GaAs microcavity. Phys Rev Lett 113:057401

    Article  ADS  Google Scholar 

  35. Gudyma Iu, Maksymov A, Dimian M (2013) Stochastic kinetics of photoinduced phase transitions in spin-crossover solids. Phys Rev E 88:042111

    Article  ADS  Google Scholar 

  36. Hauser A (1991) Intersystem crossing in Fe(II) coordination compounds. Coord Chem Rev 111:275–290

    Article  Google Scholar 

  37. Miguel MS, Toral R (2000) Stochastic effects in physical systems. In: Tirapegui E, Martinez J, Tiemann R (eds) Instabilities and nonequilibrium structures VI. Kluwer Academic, Dordrecht, p 35–130

    Chapter  Google Scholar 

  38. Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29:610–611

    Article  MATH  Google Scholar 

  39. Jia Y, Yu S-N, Li J-R (2000) Stochastic resonance in a bistable system subject to multiplicative and additive noise. Phys Rev E 62:1869–1878

    Article  ADS  Google Scholar 

  40. Zaikin AA, Kurths J, Schimansky-Geier L (2000) Doubly stochastic resonance. Phys Rev Lett 85:227–231

    Article  ADS  Google Scholar 

  41. Gudyma Iu, Maksymov A, Dimian M (2014) Stochastic resonance in bistable spin-crossover compounds with light-induced transitions. Phys Rev E 90:052135

    Article  ADS  Google Scholar 

  42. Hanggi P, Jung P (1995) Colored noise in dynamical systems. Adv Chem Phys 89:239–326

    ADS  Google Scholar 

  43. Gudyma Iu, Maksymov A, Enachescu C (2010) Decay of a metastable high-spin state in spin-crossover compounds: mean first passage time analysis. Eur Phys J B 78:167–172

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at University of New Orleans was supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iurii Gudyma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gudyma, I., Maksymov, A. (2016). Phenomenological Models of Photoinduced Transition in Spin-Crossover Materials. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_6

Download citation

Publish with us

Policies and ethics