Skip to main content

A Complete NCI Perspective: From New Bonds to Reactivity

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Abstract

The Non-Covalent Interaction (NCI) index is a new topological tool that has recently been added to the theoretical chemist’s arsenal. NCI fills a gap that existed within topological methods for the visualization of non-covalent interactions. Based on the electron density and its derivatives, it is able to reveal both attractive and repulsive interactions in the shape of isosurfaces, whose color code reveals the nature of the interaction. It is interesting to note that NCI can even be calculated at the promolecular level, making it a suitable tool for big systems, such as proteins or DNA. Within this chapter we will review the main characteristics of NCI, its similarities with and differences from previous approaches. Special attention will be paid to the visualization of new interaction types. Being based on the electron density, NCI is not only very stable with respect to the calculation method, but it is also a suitable tool for detecting new bonding mechanisms, since all such mechanisms should have a detectable effect on the electron density. This type of approach overcomes the limitations of bond definition, revealing all interaction types, irrespective of whether they have a name or have previously been identified. Finally, we will show how this tool can be used to understand chemical change along a chemical reaction. We will show an example of torquoselectivity and put forward an explanation of selectivity based on secondary interactions which is complementary to the historical orbital approach.

Zeina Maroun can be contacted at zema@topsoe.dk

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauling L (1947) General chemistry. Dover Publications Inc, New York

    Google Scholar 

  2. Burdett JK (1997) Chemical bonds-a dialog. Wiley, Chichester, England

    Google Scholar 

  3. Frenking G, Shaik S (eds) (2007) Special issue: 90 years of chemical bonding. J Comput Chem 28:1–466

    Google Scholar 

  4. Frenking G, Krapp A (2007) Unicorns in the world of chemical bonding models. J Comput Chem 28:15–24

    Article  CAS  Google Scholar 

  5. Shaik S, Rzepa HS, Hoffmann R (2013) One molecule, two atoms, three views, four bonds? Angew Chem Int Ed 52:3020–3033

    Article  CAS  Google Scholar 

  6. Frenking G, Hermann M (2013) Angew Chem Int Ed 52:5922–5925

    Google Scholar 

  7. Coulson CA (1953) The spirit of applied mathematics. Clarendon Press, pp 20–21

    Google Scholar 

  8. Jacobsen H (2010) Kinetic energy density and covalent bonding—a complementary analysis at the border of bond and no bond. Dalton Trans 39:5426–5428

    Article  CAS  Google Scholar 

  9. Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109:3957–3959

    Article  CAS  Google Scholar 

  10. Jacobsen H (2013) Topology maps of bond descriptors based on the kinetic energy density and the essence of chemical bonding. Phys Chem Chem Phys 15:5057–5066

    Article  CAS  Google Scholar 

  11. Schleyer PvR (2005) Introduction: delocalization pi and sigma. Chem Rev 105:3433–3435

    Article  CAS  Google Scholar 

  12. Popelier PLA (2007) Preface. Faraday Discuss 135:1–3

    Article  Google Scholar 

  13. Alabugin IV, Gilmore KM, Peterson PW (2011) Hyperconjugation. Wiley interdisciplinary reviews: computational molecular science 1:109–141

    Google Scholar 

  14. Gonthier JF, Steinmann SN, Wodrich MD, Corminboeuf C (2012) Quantification of “fuzzy” chemical concepts: a computational perspective. Chem Soc Rev 41:4671–4687

    Article  CAS  Google Scholar 

  15. Whitaker A (1996) Einstein, bohr and the quantum dilemma. Cambridge University Press, Cambridge

    Google Scholar 

  16. Alvarez S, Hoffmann R, Mealli C (2009) A bonding quandary—or—a demonstration of the fact that scientists are not born with logic. Chem Eur J 15:8358–8373

    Article  CAS  Google Scholar 

  17. Danovich D, Hiberty PC, Wu W, Rzepa HS, Shaik S (2014) The nature of the fourth bond in the ground state of C-2: the quadruple bond conundrum. Chem Eur J 20:6214–6220

    Article  Google Scholar 

  18. Ayers PL, Boyd RJ et al (2015) Six questions on topology in theoretical chemistry. Comput Theor Chem 1053:2–16

    Article  CAS  Google Scholar 

  19. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–786

    Article  CAS  Google Scholar 

  20. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  21. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed Engl 8:781–932

    Article  CAS  Google Scholar 

  22. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  23. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  24. Bader RFW (1990) Atoms in molecules: a quantum theory. In: International series of monographs on chemistry, vol 22. Oxford Science Publications, Oxford

    Google Scholar 

  25. Matta CF, Boyd RJ (2007) In the quantum theory of atoms in molecules. Wiley-VCH, New York, pp 1–34

    Google Scholar 

  26. Becke AD, Edgecombe KEJ (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  27. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  CAS  Google Scholar 

  28. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  CAS  Google Scholar 

  29. Fenniri H, Packiarajan M, Vidale KL, Sherman DM, Hallenga K, Wood KV, Stowell JG (2001) Helical rosette nanotubes: design, self-assembly, and characterization. J Am Chem Soc 123:3854–3855

    Article  CAS  Google Scholar 

  30. Kruse P, Johnson ER, DiLabio GA, Wolkow RA (2002) Patterning of vinylferrocene on H-Si(100) via self-directed growth of molecular lines and STM-induced decomposition. Nano Lett 2:807–810

    Article  CAS  Google Scholar 

  31. Sheiko SS, Sun FC, Randall A, Shirvanyants D, Rubinstein M, Lee H, Matyjaszewski K (2006) Adsorption-induced scission of carbon-carbon bonds. Nature 440:191–194

    Article  CAS  Google Scholar 

  32. DiLabio GA, Piva PG, Kruse P, Wolkow RA (2004) Dispersion interactions enable the self-directed growth of linear alkane nanostructures covalently bound to silicon. J Am Chem Soc 126:16048–16050

    Article  CAS  Google Scholar 

  33. Kollman PA (1977) Noncovalent interactions. Chem Rev 10:365–371

    CAS  Google Scholar 

  34. Cerniý J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 9:5291–5303

    Article  Google Scholar 

  35. Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry, 2nd edn. Worth Publishers, Inc

    Google Scholar 

  36. Krishnamoorthy N, Yacoub MH, Yaliraki SN (2011) A computational modeling approach for enhancing self-assembly and biofunctionalisation of collagen biomimetic peptides. Biomaterials 32:7275–7285

    Article  CAS  Google Scholar 

  37. Dutta A, Jana AD, Gangopadhyay S, Kumar Das K, Marek J, Marek R, Brus J, Ali M (2011) Unprecedented ππ interaction between an aromatic ring and a pseudo-aromatic ring formed through intramolecular H-bonding in a bidentate Schiff base ligand: crystal structure and DFT calculations. Phys Chem Chem Phys 13:15845–15853

    Article  CAS  Google Scholar 

  38. Gavezzotti A (2007) Molecular aggregation. Structure analysis and molecular simulation of crystals and liquids. In: IUCr monographs on crystallography, vol 19. Oxford University Press, Oxford

    Google Scholar 

  39. Keinan S, Ratner MA, Marks TJ (2004) Molecular zippers–designing a supramolecular system. J Chem Phys Lett 392:291–296

    Article  CAS  Google Scholar 

  40. Desiraju GR (1989) Crystal engineering. The design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  41. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL, Boerrigter SXM, Tan JS, Della Valle RG, Venuti E et al (2009) Acta Cryst B 65:107–125

    Article  CAS  Google Scholar 

  42. Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747

    Article  CAS  Google Scholar 

  43. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  Google Scholar 

  44. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M (1999) Automated analysis of interatomic contacts in proteins. Bioinformatics 15:327–332

    Article  CAS  Google Scholar 

  45. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  CAS  Google Scholar 

  46. Alikhani ME, Fuster F, Silvi B (2005) What can tell the topological analysis of ELF on hydrogen bonding? Struct Chem 16:203–210

    Article  CAS  Google Scholar 

  47. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  48. Pilmé J, Piquemal J-P (2008) Advancing beyond charge analysis using the electronic localization function: chemically intuitive distribution of electrostatic moments. J Comput Chem 29:1440–1449

    Article  Google Scholar 

  49. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864

    Article  Google Scholar 

  50. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  51. Contreras-García J, Johnson E, Keinan S, Chaudret R, Piquemal J-P, Beratan D, Yang W (2011) NCIPLOT: a program for plotting non-covalent interaction regions. J Chem Theor Comp 7:625–632

    Article  Google Scholar 

  52. Contreras-García J, Johnson ER, Yang W (2011) Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. J Phys Chem A 115:12983–12990

    Article  Google Scholar 

  53. Becke AD (1995) Modern electronic structure theory. World Scientific, Yarkony

    Google Scholar 

  54. Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794

    Article  CAS  Google Scholar 

  55. Zupan A, Burke K, Ernzerhof M, Perdew JP (1997) Distributions and averages of electron density parameters: explaining the effects of gradient corrections. J Chem Phys 106:10184–10193

    Article  CAS  Google Scholar 

  56. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  57. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  58. Arfken G (1985) Mathematical methods for physicists. Orlando Academic Press

    Google Scholar 

  59. Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  60. Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comp 9:3263–3266

    Article  CAS  Google Scholar 

  61. Contreras-García J, Calatayud M, Piquemal J-P, Recio JM (2012) Ionic interactions: comparative topological approach. Comp Theo Chem 998:193–201

    Article  Google Scholar 

  62. Chaudret R, de Courcy B, Contreras-García J, Gloaguen E, Zehnacker-Rentien A, Mons M, Piquemal J-P (2013) Unraveling non covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy. Phys Chem Chem Phys 16:9876–9891

    Article  Google Scholar 

  63. Spackman MA, Maslen EN (1986) Chemical properties from the promolecule. J Phys Chem 90:2020–2027

    Article  CAS  Google Scholar 

  64. Martin Pendás A, Luaña V, Pueyo L, Francisco E, Mori-Sánchez P (2002) Hirshfeld surfaces as approximations to interatomic surfaces. J Chem Phys 117:1017–1023

    Article  Google Scholar 

  65. Fiedler S, Broecker J, Keller S (2010) Protein folding in membranes. Cell Mol Life Sci 67:1779–1798

    Article  CAS  Google Scholar 

  66. Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  Google Scholar 

  67. Deppmeier BJ, Driessen AJ, Hehre W, Johnson JA, Klunzinger PE, Watanabe W (2002) Spartan ES 1.0.2. Wavefunction Inc., Irvine

    Google Scholar 

  68. Lu X-J, Olson WK 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108–121

    Google Scholar 

  69. http://rutchem.rutgers.edu/olson/Tsukuba/

  70. Espinosa E, Molins E, Lecomte C (1988) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  Google Scholar 

  71. Wieczorek R, Dannenberg JJ (2004) Comparison of fully optimized α-and 310-helices with extended β-strands. An oniom density functional theory study. J Am Chem Soc 126:14198–14205

    Article  CAS  Google Scholar 

  72. Viswanathan R, Asensio A, Dannenberg JJ (2004) Cooperative hydrogen-bonding in models of antiparallel β-sheets. J Phys Chem A 108:9205–9212

    Article  CAS  Google Scholar 

  73. Jurecka P, Hobza P (2003) True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine. cytosine, adenine. thymine, and their 9-and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD (T) levels and comparison with experiment. J Am Chem Soc 125:15608–15613

    Article  CAS  Google Scholar 

  74. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  75. Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7:2511–2519

    Article  CAS  Google Scholar 

  76. Manna D, Mugesh G (2012) Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. J Am Chem Soc 134:4269–4279

    Article  CAS  Google Scholar 

  77. Scheiner S (2011) A new noncovalent force: comparison of P···N interaction with hydrogen and halogen bonds. J Chem Phys 134:094315–094319

    Article  Google Scholar 

  78. Mani D, Arunan E (2013) The X-C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383

    Article  CAS  Google Scholar 

  79. Matter H, Nazaré M, Güssregen S, Will DW, Schreuder H, Bauer A, Urmann M, Ritter K, Wagner M, Wehner V (2009) Evidence for C-Cl/C-Br π interactions as an important contribution to protein-ligand binding affinity. Angew Chem 121:2955–2960

    Article  Google Scholar 

  80. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J et al (2011) Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem Int Ed 50:314–318

    Article  CAS  Google Scholar 

  81. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J Phys Chem A 110:13877–13883

    Article  CAS  Google Scholar 

  82. Murray J, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  83. George J, Deringer VL, Dronskowski R (2014) Cooperativity of halogen, chalcogen, and pnictogen bonds in infinite molecular chains by electronic structure theory. J Phys Chem A 118:3193–3200

    Article  CAS  Google Scholar 

  84. Legon AC, Roberts BP, Wallwork AL (1990) Rotational spectra and geometries of the gas-phase dimers (CH4, HF) and (CH4, HCl) Chem. Phys Lett 173:107–114

    CAS  Google Scholar 

  85. Stevens WJ, Fink WH (1987) Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer. Chem Phys Lett 139:15–22

    Article  CAS  Google Scholar 

  86. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  87. Morrison CA, Siddick MM (2004) Dihydrogen bonds in solid BH3NH3. Angew Chem Int Ed 116:4780–4782

    Article  Google Scholar 

  88. Matta CF, Hernández-Trujillo J, Tang T, Bader RFW (2003) Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem Eur J 9:1940–1951

    Article  CAS  Google Scholar 

  89. Scienomics (2014) MAPS platform, version 3.4, France

    Google Scholar 

  90. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  91. Richardson TB, de Gala S, Crabtree PE, Siegbahn MRH (1995) Unconventional hydrogen bonds: intermolecular B-H···H-N interactions. J Am Chem Soc 117:12875–12876

    Google Scholar 

  92. Matito E, Poater J, Duran M, Solà M (2006) Electron fluctuation in pericyclic and pseudopericiclyc reations. Eur J Chem Phys Phys Chem 7:111–113

    CAS  Google Scholar 

  93. Gillet N, Chaudret R, Contreras-Garcia J, Yang W, Silvi B, Piquemal J-P (2012) Coupling quantum interpretative techniques: another look at chemical mechanism in organic reactions. J Chem Theory Comput 8:3993–3997

    Article  CAS  Google Scholar 

  94. Woodward RB, Hoffmann RJ (1965) Selection rules for concerted cycloaddition reactions. J Am Chem Soc 87:2046–2048

    Article  Google Scholar 

  95. Houk KN, Li Y, Evanseck JD (1992) Transition structures of hydrocarbon pericyclic reactions. Angew Chim Int Ed 31:682–708

    Article  Google Scholar 

  96. Kirmse W, Rondan NG, Houk KN (1984) Stereoselective substituent effects on conrotatory electrocyclic reaction of cyclobutenes. J Am Chem Soc 106:7989–7991

    Google Scholar 

  97. Rondan NG, Houk KN (1984) Theory of stereoselection in conrotatory electrocyclic reactions of substitued cyclobutenes. J Am Chem Soc 107:2099–2111

    Article  Google Scholar 

  98. Deward MJS (1989) A critique of frontier orbital theory. J Mol Struct (Theochem) 200:301–323

    Article  Google Scholar 

  99. Ponec R, Yuzhakov G, Pecka J (1996) Similarity approach to chemical reactivity. Torquoselectivity in pericyclic reactions. J Math Chem 20:301–310

    Article  CAS  Google Scholar 

  100. De Courcy B, Dognon J-P, Clavaguéra C, Gresh N, Piquemal J-P (2011) Interactions within the Alcohol Dehydrogenase (ADH) Zn(II)-metalloenzyme active site: interplay between subvalence, electron correlation/dispersion and charge transfer/induction effects. Int J Quantum Chem 111:1213–1221

    Article  Google Scholar 

  101. Lee Y-M, Lim C (2011) Factors controlling the reactivity of zinc finger cores. J Am Chem Soc 133:8691–8703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work undertaken (partially) in the framework of CALSIMLAB is supported by the public grant ANR-11-LABX-0037-01 overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Contreras-García .

Editor information

Editors and Affiliations

Appendices

Behavior of Model Densities

See Fig. 18.19.

Fig. 18.19
figure 19

Behavior of s(ρ) for model densities ρ = e αr for hydrogen and carbon

Parameters for Promolecular Calculations

See Table 18.2.

Table 18.2 Parameterized exponents (η i ) and coefficients (c i ) of sphericalize averaged atomic densities, in atomic units

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Narth, C. et al. (2016). A Complete NCI Perspective: From New Bonds to Reactivity. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_18

Download citation

Publish with us

Policies and ethics