Skip to main content

A Parsimonious Radial Basis Function-Based Neural Network for Data Classification

  • Chapter
  • First Online:
Book cover Intelligent Decision Technology Support in Practice

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 42))

  • 725 Accesses

Abstract

The radial basis function neural network trained with a dynamic decay adjustment (known as RBFNDDA) algorithm exhibits a greedy insertion behavior as a result of recruiting many hidden nodes for encoding information during its training process. In this chapter, a new variant RBFNDDA is proposed to rectify such deficiency. Specifically, the hidden nodes of RBFNDDA are re-organized through the supervised Fuzzy ARTMAP (FAM) classifier, and the parameters of these nodes are adapted using the Harmonic Means (HM) algorithm. The performance of the proposed model is evaluated empirically using three benchmark data sets. The results indicate that the proposed model is able to produce a compact network structure and, at the same time, to provide high classification performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bache, K., Lichman, M.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. University of California, School of Information and Computer Science, Irvine (2013)

  2. Berthold, M.R., Diamond, J.: Constructive training of probabilistic neural networks. Neurocomputing 19(1–3), 167–183 (1998)

    Article  Google Scholar 

  3. Bortman, M., Aladjem, M.: A growing and pruning method for radial basis function networks. IEEE Trans. Neural Netw. 20(6), 1039–1045 (2009)

    Article  Google Scholar 

  4. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy artmap: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Netw. 3(5), 698–713 (1992)

    Article  Google Scholar 

  5. Carpenter, G.A., Milenova, B.L., Noeske, B.W.: Distributed artmap: a neural network for fast distributed supervised learning. Neural Netw. 11(5), 793–813 (1998)

    Article  Google Scholar 

  6. Dogantekin, E., Dogantekin, A., Avci, D.: An automatic diagnosis system based on thyroid gland: ADSTG. Expert Syst. Appl. 37(9), 6368–6372 (2010)

    Article  Google Scholar 

  7. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A., Peña-Barragán, J.M., López-Granados, F.: Parameter estimation of \(q\)-gaussian radial basis functions neural networks with a hybrid algorithm for binary classification. Neurocomputing 75(1), 123–134 (2012)

    Article  Google Scholar 

  9. Han, H.-G., Qiao, J.-F.: A structure optimisation algorithm for feedforward neural network construction. Neurocomputing 99, 347–357 (2013)

    Article  Google Scholar 

  10. Hudak, M.H.: RCE classifiers: theory and practice. Cybern. Syst. 23(5), 483–515 (1992)

    Article  MathSciNet  Google Scholar 

  11. Keleş, A., Keleş, A.: Expert system for thyroid disease diagnosis. Expert Syst. Appl. 34(1), 242–246 (2008)

    Article  Google Scholar 

  12. Kohavi, R.: A study of cross validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference Artificial Intelligence (IJCAI), pp. 1137–1145. Morgan Kaufmann (1995)

    Google Scholar 

  13. Martínez-Rego, D., Pérez-Sánchez, B., Fontenla-Romero, O., Alonso-Betanzos, A.: A robust incremental learning method for non-stationary environments. Neurocomputing 74(11), 1800–1808 (2011)

    Article  Google Scholar 

  14. Ni, J., Song, Q.: Dynamic pruning algorithm for multilayer perceptron based neural control systems. Neurocomputing 69(16–18), 2097–2111 (2006)

    Article  Google Scholar 

  15. Paetz, J.: Reducing the number of neurons in radial basis function networks with dynamic decay adjustment. Neurocomputing 62, 79–91 (2004)

    Article  Google Scholar 

  16. Polat, K., Gunes, S.: An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digit. Signal Proc. 17(4), 702–710 (2007)

    Article  Google Scholar 

  17. Reed, R.: Pruning algorithms—a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)

    Article  Google Scholar 

  18. Reilly, D.L., Cooper, L.N., Elbaum, C.: A neural model for category learning. Biol. Cybern. 45(1), 35–41 (1982)

    Article  Google Scholar 

  19. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

  20. Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The no-prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 37, 182–188 (2013)

    Article  Google Scholar 

  21. Xu, R., Wunsch II, D.C.: BARTMAP: a viable structure for biclustering. Neural Netw. 24(7), 709–716 (2011)

    Article  Google Scholar 

  22. Yang, S.-H., Chen, Y.-P.: An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications. Neurocomputing 86, 140–149 (2012)

    Article  Google Scholar 

  23. Yang, L., Yang, S., Zhang, R., Jin, H.: Sparse least square support vector machine via coupled compressive pruning. Neurocomputing 131, 77–86 (2014)

    Article  Google Scholar 

  24. Zhang, B.: Generalized k-harmonic mean—boosting in unsupervised learning. Technical Report HPL-2000-137, Hewlett-Packard Laboratories (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shing Chiang Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tan, S.C., Lim, C.P., Watada, J. (2016). A Parsimonious Radial Basis Function-Based Neural Network for Data Classification. In: Tweedale, J., Neves-Silva, R., Jain, L., Phillips-Wren, G., Watada, J., Howlett, R. (eds) Intelligent Decision Technology Support in Practice. Smart Innovation, Systems and Technologies, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-21209-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21209-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21208-1

  • Online ISBN: 978-3-319-21209-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics