Skip to main content

A Physarum-Inspired Vacant-Particle Model with Shrinkage for Transport Network Design

  • Conference paper
  • First Online:
Advances in Swarm and Computational Intelligence (ICSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9140))

Included in the following conference series:

Abstract

Physarum can form a higher efficient and stronger robust network in the processing of foraging. The vacant-particle model with shrinkage (VP-S model), which captures the relationship between the movement of Physarum and the process of network formation, can construct a network with a good balance between exploration and exploitation. In this paper, the VP-S model is applied to design a transport network. We compare the performance of the network designed based on the VP-S model with the real-world transport network in terms of average path length, network efficiency and topology robustness. Experimental results show that the network designed based on the VP-S model has better performance than the real-world transport network in all measurements. Our study indicates that the Physarum-inspired model can provide useful suggestions to the real-world transport network design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bozzone, D.M.: Cells With “Personality” Physarum Polycephalum. Carolina Tips 64(3), 9–11 (2001)

    Google Scholar 

  2. Nakagaki, T., Yamada, H., Tóth, A.: Maze-Solving by an Amoeboid Organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  3. Nakagaki, T., Yamada, H., Hara, M.: Smart Network Solutions in an Amoeboid Organism. Biophys. Chem. 107(1), 1–5 (2004)

    Article  Google Scholar 

  4. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining Multiple Separate Food Sources: Behavioural Intelligence in the Physarum plasmodium. P. Roy. Soc. B-Biol. Sci. 271(1554), 2305–2310 (2004)

    Article  Google Scholar 

  5. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for Biologically Inspired Adaptive Network Design. Science 327(5964), 439–442 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Adamatzky, A.: Bioevaluation of World Transport Networks. World Scientific Publishing Company, Singapore (2012)

    Book  Google Scholar 

  7. Reid, C.R., Beekman, M.: Solving the Towers of HanoiHow an Amoeboid Organism Efficiently Constructs Transport Networks. J. Exp. Biol. 216(9), 1546–1551 (2013)

    Article  Google Scholar 

  8. Tero, A., Kobayashi, R., Nakagaki, T.: A Mathematical Model for Adaptive Transport Network in Path Finding by True Slime Mold. J. Theor. Biol. 244(4), 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  9. Adamatzky, A.: Physarum Machines: Encapsulating Reaction Diffusion to Compute Spanning Tree. Naturwissenschaften 94(12), 975–980 (2007)

    Article  Google Scholar 

  10. Jones, J.: The Emergence and Dynamical Evolution of Complex Transport Networks from Simple Low-Level Behaviours. Int. J. Unconv. Comput. 6(2), 125–144 (2010)

    Google Scholar 

  11. Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal Model of a Cell Connecting Amoebic Motion and Adaptive Transport Networks. J. Theor. Biol. 253(4), 659–667 (2008)

    Article  Google Scholar 

  12. Tsompanas, M.-A.I., Sirakoulis, G.C., Adamatzky, A.I.: Evolving Transport Networks with Cellular Automata Models Inspired by Slime Mould. IEEE Trans. Cybern. PP(99), 1–13 (2014)

    Article  Google Scholar 

  13. Aono, M., Hara, M.: Spontaneous Deadlock Breaking on Amoeba-Based Neurocomputer. Biosystems 91(1), 83–93 (2008)

    Article  Google Scholar 

  14. Gunji, Y.P., Shirakawa, T., Niizato, T., Yamachiyo, M., Tani, I.: An Adaptive and Robust Biological Network Based on the Vacant-particle Transportation Model. J. Theor. Biol. 272(1), 187–200 (2011)

    Article  Google Scholar 

  15. Schneider, C.M., Moreira, A.A., Andrade, J.S., Havlin, S., Herrmann, H.J.: Mitigation of Malicious Attacks on Networks. PNAS 108(10), 3838–3841 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, Y., Gao, C., Liang, M., Tao, L., Zhang, Z. (2015). A Physarum-Inspired Vacant-Particle Model with Shrinkage for Transport Network Design. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20466-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20465-9

  • Online ISBN: 978-3-319-20466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics