Skip to main content

Locally Sparsified Compressive Sensing in Magnetic Resonance Imaging

  • Chapter
Integrated Systems: Innovations and Applications

Abstract

Magnetic Resonance Imaging (MRI) is a widely used technique for acquiring images of human organs/tissues. Due to its complex imaging process, it consumes a lot of time to produce a high quality image. Compressive Sensing (CS) has been used by researchers for rapid MRI. It uses a global sparsity constraint with variable density random sampling and L1 minimisation. This work intends to speed up the imaging process by exploiting the non-uniform sparsity in the MR images. Locally Sparsified CS suggests that the image can be even better sparsified by applying local sparsity constraints. The image produced by local CS can further reduce the sample set. This paper establishes the basis for a methodology to exploit non-uniform nature of sparsity and to make the MRI process time efficient by using local sparsity constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, J.: MRI data acquisition and image reconstruction from multiple, non-interacting receiver coils. In: Proceedings of the Annual International Conference of the IEEE Engineering Engineering in Medicine and Biology Society, Images of the Twenty-First Century, pp. 607–608. IEEE,

    Google Scholar 

  2. Yeh, E., McKenzie, C., Ohliger, M., Sodickson, D.: Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): Constrained image reconstruction using k-space locality in radiofrequency coil encoded data. Magnetic Resonance in Medicine 53(6), 1383–1392 (2005)

    Article  Google Scholar 

  3. Beatty, P., et al.: Anti-aliased magnetic resonance image reconstruction using partially parallel encoded data, US Patent 7,439,739 (October 21, 2008)

    Google Scholar 

  4. Ye, X., Chen, Y., Huang, F.: Computational Acceleration for MR Image Re-construction in Partially Parallel Imaging. IEEE Transactions on Medical Imaging 30(5), 1055–1063 (2011)

    Article  Google Scholar 

  5. Blaimer, M., Breuer, F., Mueller, M., Heidemann, R., Griswold, M., Jakob, P.: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Topics in Magnetic Resonance Imaging 15(4), 223–236 (2004)

    Article  Google Scholar 

  6. Pruessmann, K., Weiger, M., Scheidegger, M., Boesiger, P.: SENSE: SENSitivity Encoding for fast MRI. Magnetic Resonance in Medicine 42(5), 952–962 (1999)

    Article  Google Scholar 

  7. Griswold, M., Jakob, P., Heidemann, R., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  8. Marseille, G., De Beer, R., Fuderer, M., Mehlkopf, A., Van Ormondt, D.: Non-uniform phase-encode distributions for MRI scan time reduction. Journal of Magnetic Resonance. Series B 111(1), 70 (1996)

    Article  Google Scholar 

  9. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  10. Lustig, M., Santos, J., Lee, J., Donoho, D., Pauly, J.: Application of compressed sensing for rapid MR imaging. SPARS, Rennes, France (2005)

    Google Scholar 

  11. Lingala, S., Jacob, M.: Blind compressive sensing dynamic MRI. IEEE Transactions on Medical Imaging 32(6), 1132–1145 (2013)

    Article  Google Scholar 

  12. Smith, D., Li, X., Gambrell, J., Arlinghaus, L., Quarles, C., Yankeelov, T., Welch, E.: Robustness of quantitative compressive sensing MRI: The effect of random under-sampling patterns on derived parameters for DCE and DSC-MRI. In: IEEE Transactions on Medical Imaging, vol. 31(2), pp. 504–511 (2012)

    Google Scholar 

  13. Dong, Y., Ji, J.: Novel compressive sensing MRI methods with combined sparsifying transforms. In: 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 721–724. IEEE (2012)

    Google Scholar 

  14. Zhu, Z., Yang, R., Zhang, J., Zhang, C.: Compressed sensing MRI by two dimensional wavelet filter banks. In: 7th International Workshop on Multidimensional (nD) Systems (nDs), pp. 1–6. IEEE (2011)

    Google Scholar 

  15. Lustig, M., Santos, J., Donoho, D., Pauly, J.: kt-SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity. In: Proceedings of the 13th Annual Meeting of ISMRM, Seattle, p. 2420 (2006)

    Google Scholar 

  16. Lustig, M., Lee, J., Donoho, D., Pauly, J.: Faster imaging with randomly perturbed, under-sampled spirals and l1 reconstruction. In: Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, p. 685 (2005)

    Google Scholar 

  17. Lustig, M., Donoho, D., Pauly, J.: Rapid MR imaging with compressed sensing and randomly under-sampled 3DFT trajectories. In: Proc. 14th Ann. Meeting ISMRM

    Google Scholar 

  18. Lustig, M., Pauly, J.M.: SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magnetic Resonance in Medicine 64, 457–471 (2010)

    Google Scholar 

  19. Vasanawala, S., Murphy, M., Alley, M., Lai, P., Keutzer, K., Pauly, J., Lustig, M.: Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of paediatric patients. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1039–1043. IEEE (2011)

    Google Scholar 

  20. Chang, C., Ji, J.: Compressed sensing MRI with multi-channel data using multi-core processors. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 2684–2687. IEEE (2009)

    Google Scholar 

  21. Lusting, M., Alley, M., Vasanawala, S., Donoho, D., Pauly, J.: L1 SPIR-iT: auto calibrating parallel imaging compressed sensing. Proc. Intl. Soc. Mag. Reson Med. 17, 379

    Google Scholar 

  22. Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast L1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime. IEEE Transactions Medical Imaging 99, 1 (2012)

    Google Scholar 

  23. Donoho, D.: For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cand‘es, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Processing Magazine 25(2), 21–30 (2008)

    Article  Google Scholar 

  25. Cand‘es, E.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452 (2006)

    Google Scholar 

  26. Miao, J., Wong, W.C., Narayan, S., Huo, D., Wilson, D.L.: Modelling non- stationarily of kernel weights for k-space reconstruction in partially parallel imaging. Medical Physics 38, 4760 (2011)

    Article  Google Scholar 

  27. Miao, J., Guo, W., Narayan, S., Wilson, D.L.: A simple application of compressed sensing to further accelerate partially parallel imaging. Magnetic Resonance Imaging (2012)

    Google Scholar 

  28. Razzaq, F., Mohamed, S., Bhatti, A., Nahavandi, S.: Non-uniform sparsity in rapid compressive sensing MRI. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2253–2258 (2012)

    Google Scholar 

  29. Razzaq, F.A., Mohamed, S., Bhatti, A., Nahavandi, S.: Defining sub-regions in locally sparsified compressive sensing MRI. In: The IASTED Int Conf. on Biomedical Engineering (BioMED), pp. 360–367 (2013)

    Google Scholar 

  30. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nahavandi, S., Razzaq, F.A., Mohamed, S., Bhatti, A., Brotchie, P. (2015). Locally Sparsified Compressive Sensing in Magnetic Resonance Imaging. In: Fathi, M. (eds) Integrated Systems: Innovations and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-15898-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15898-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15897-6

  • Online ISBN: 978-3-319-15898-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics