Skip to main content

Surface Charge of Clean LiNbO3 Z-Cut Surfaces

  • Conference paper
  • First Online:
  • 1999 Accesses

Abstract

The geometry of the polar LiNbO3 (0001) surface is strongly temperature dependent. In this work the surface charge associated to various surface terminations is estimated from first-principles calculations. All stable terminations are found to lower the polarization charge, showing that the surface charge compensation is a major driving force for surface reconstruction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, T.C., Lee, J.T., Robert, M.A., Wang, S., Rabson, T.A.: Rabson, surface acoustic wave applications of lithium niobate thin films. Appl. Phys. Lett. 82(2), 191 (2003)

    Article  Google Scholar 

  2. Namkoong, G., Lee, K.K., Madison, S.M., Henderson, W., Ralph, S.E., Doolittle, W.A.: III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy. Appl. Phys. Lett. 87(17), 171107 (2005)

    Article  Google Scholar 

  3. Stock, M., Dunn, S.: LiNbO3 - A new material for artificial photosynthesis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(9), 1988 (2011)

    Article  Google Scholar 

  4. Stock, M., Dunn, S.: Influence of the ferroelectric nature of lithium niobate to drive photocatalytic dye decolorization under artificial solar light. J. Phys. Chem. C 116(39), 20854 (2012)

    Article  Google Scholar 

  5. Ferris, R., Yellen, B., Zauscher, S.: Ferroelectric Thin Films in Fluidic Environments: A new interface for sensing and manipulation of matter. Small 8(1), 28 (2011)

    Article  Google Scholar 

  6. Huang, S., Luo, J., Yip, H.L., Ayazi, A., Zhou, X.H., Gould, M., Chen, A., Baehr-Jones, T., Hochberg, M., Jen, A.K.Y.: Efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals. Adv. Mater. 24(10), OP42 (2011)

    Article  Google Scholar 

  7. Merola, F., Grilli, S., Coppola, S., Vespini, V., De Nicola, S., Maddalena, P., C̃arfagna, C., Ferraro, P.: Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv. Funct. Mater. 22(15), 3267 (2012)

    Google Scholar 

  8. Li, D., Zhao, M.H., Garra, J., Kolpak, A.M., Rappe, A.M., Bonnell, D.A., Vohs, J.M.: Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nature Materials 7(6), 473 (2008)

    Article  Google Scholar 

  9. Rode, S., Hölscher, R., Sanna, S., Klassen, S., Kobayashi, K., Yamada, H., Schmidt, W.G., Kühnle, A.: Atomic-resolution imaging of the polar (0001) surface of LiNbO3 in aqueous solution by frequency modulation atomic force microscopy. Phys. Rev. B 86, 075468 (2012)

    Article  Google Scholar 

  10. Sanna, S., Rode, S., Hölscher, R., Klassen, S., Marutschke, C., Kobayashi, K., Yamada, H., Schmidt, W.G., Kühnle, A.: Charge compensation by long-period reconstruction in strongly polar lithium niobate surfaces. Phys. Rev. B 88, 115422 (2013)

    Article  Google Scholar 

  11. Sanna, S., Schmidt, W.G.: Lithium niobate X-cut, Y -cut, and Z-cut surfaces from ab initio theory. Phys. Rev. B 81, 214116 (2010)

    Article  Google Scholar 

  12. Sanna, S., Gavrilenko, A.V., Schmidt, W.G.: Ab initio investigation of the LiNbO3(0001) surface. Phys. Stat. Sol. (c) 7(2), 145 (2010)

    Google Scholar 

  13. Sanna, S., Hölscher, R., Schmidt, W.G.: Polarization-dependent water adsorption on the LiNbO3(0001) surface. Phys. Rev. B 86, 205407 (2012)

    Article  Google Scholar 

  14. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    Article  Google Scholar 

  15. Perdew, J.P., Yue, W.: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 33(12), 8800 (1986)

    Article  Google Scholar 

  16. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  Google Scholar 

  17. Bengtsson, L.: Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301 (1999)

    Article  MathSciNet  Google Scholar 

  18. Neugebauer, J., Scheffler, M.: Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067 (1992)

    Article  Google Scholar 

  19. Meyer, B., Vanderbilt, D.: Ab initio study of BaTiO3 and PbTiO3 surfaces in external electric fields. Phys. Rev. B 63(20), 205426 (2001)

    Article  Google Scholar 

  20. Levchenko, S.V., Rappe, A.M.: Influence of Ferroelectric Polarization on the Equilibrium Stoichiometry of Lithium Niobate (0001) Surfaces. Phys. Rev. Lett. 100, 256101 (2008)

    Article  Google Scholar 

  21. Vanderbilt, D., King-Smith, R.D.: Electric polarization as a bulk quantity and its relation to surface charge. Phys. Rev. B 48, 4442 (1993)

    Article  Google Scholar 

  22. Resta, R.: Modern theory of polarization in ferroelectrics. Ferroelectrics 151(1), 49 (1994)

    Article  MathSciNet  Google Scholar 

  23. Johann, F., Soergel, E.: Quantitative measurement of the surface charge density. Quantitative measurement of the surface charge density, Appl. Phys. Lett. 95, 232906 (2009)

    Google Scholar 

  24. Bader, R.F.W.: Atoms in Molecules – A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part I, 3rd edn. Butterworth-Heinemann, Oxford (1981)

    Google Scholar 

Download references

Acknowledgements

The calculations were done using grants of computer time from the Höchstleistungs-Rechenzentrum Stuttgart (HLRS) and the Paderborn Center for Parallel Computing (PC2). The Deutsche Forschungsgemeinschaft is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sanna, S. et al. (2015). Surface Charge of Clean LiNbO3 Z-Cut Surfaces. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_12

Download citation

Publish with us

Policies and ethics