Skip to main content

Identifying Influential Nodes in Complex Networks: A Multiple Attributes Fusion Method

  • Conference paper
Active Media Technology (AMT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8610))

Included in the following conference series:

Abstract

How to identify influential nodes is still an open hot issue in complex networks. Lots of methods (e.g., degree centrality, betweenness centrality or K-shell) are based on the topology of a network. These methods work well in scale-free networks. In order to design a universal method suitable for networks with different topologies, this paper proposes a Multiple Attribute Fusion (MAF) method through combining topological attributes and diffused attributes of a node together. Two fusion strategies have been proposed in this paper. One is based on the attribute union (FU), and the other is based on the attribute ranking (FR). Simulation results in the Susceptible-Infected (SI) model show that our proposed method gains more information propagation efficiency in different types of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szolnoki, A., Xie, N.G., Ye, Y., Perc, M.: Evolution of emotions on networks leads to the evolution of cooperation in social dilemmas. Physical Review E 87, 042805 (2013)

    Google Scholar 

  2. Newman, M.E.J.: The structure and function of complex networks. Society for Industrial and Applied Mathematics 45(2), 167–256 (2003)

    MATH  Google Scholar 

  3. Yan, G., Zhou, T., Wang, J., Fu, Z.Q., Wang, B.H.: Epidemic spread in weighted scale-free networks. Chinese Physics Letters 22(2), 510–513 (2005)

    Article  Google Scholar 

  4. Chen, D.B., Lv, L.Y., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  5. Albert, R., Albert, I., L.Nakarado, G.: Structural vulnerability of the north american power grid. Physical Review E 69(2), 025103 (2004)

    Google Scholar 

  6. Wuellner, R.D., Roy, S., DSouza, R.M.: Resilience and rewiring of the passenger airline networks in the United States. Physical Review E 82(5), 056101 (2010)

    Google Scholar 

  7. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  8. Hou, B., Yao, Y.P., Liao, D.S.: Identifying all-around nodes for spreading dynamics in complex networks. Physica A: Statistical Mechanics and its Applications 391(15), 4012–4017 (2012)

    Article  Google Scholar 

  9. Liu, J.G., Ren, Z.M., Guo, Q., Wang, B.H.: Node importance ranking of complex networks. Acta Physica Sinica 62(17), 178901 (2013)

    Google Scholar 

  10. Liu, J.G., Wu, Z.X., Wang, F.: Opinion spreading and consensus formation on square lattice. International Journal of Modern Physics C 18(07), 1087 (2007)

    Article  MATH  Google Scholar 

  11. Bond, R.M., Fariss, C.J., Jones, J.J., Kramer, A.D., Marlow, C., Settle, J.J., Fowler, J.H.: A 61-million-person experiment in social influence and political mobilization. Nature 489(7415), 295–298 (2012)

    Article  Google Scholar 

  12. Gao, C., Lan, X., Zhang, X.G., Deng, Y.: A bio-inspired mehtodology of identifying influential nodes in complex networks. PLoS ONE 8(6), e66732 (2013)

    Google Scholar 

  13. Yu, H., Liu, Z., Li, Y.J.: Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica 62(2), 20204–20204 (2013)

    Google Scholar 

  14. Gao, C., Wei, D.J., Hu, Y., Mahadevan, S., Deng, Y.: A modified evidential methodology of identifying influential nodes in weighted networks. Physica A: Statistical Mechanics and its Applications 392(21), 5490–5500 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nature Physics 6(11), 888–893 (2010)

    Article  Google Scholar 

  16. Chen, D.B., Gao, H., Lv, L.Y., Zhou, T.: Identifying influential nodes in large-scale directed networks: The Role of Clustering. PLoS ONE 8(10), e77455 (2013)

    Google Scholar 

  17. Barthlemy, M.: Betweenness centrality in large complex networks. The European Physical Journal B-Condensed Matter and Complex Systems 38(2), 163–168 (2004)

    Article  Google Scholar 

  18. Tan, Y.J., Wu, J., Deng, H.Z.: Evaluation method for node importance based on node contraction in complex networks. Systems Engineering-Theory & Practice 26(11), 79–83 (2007)

    MathSciNet  Google Scholar 

  19. Zhou, X., Zhang, F.M., Li, K.W., Hui, X.B., Wu, H.S.: Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica 61(5), 050201 (2012)

    Google Scholar 

  20. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical Report Stanford InfoLab 66 (1999)

    Google Scholar 

  21. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Newtworks and ISDN Systems 30(1), 107–117 (1998)

    Article  Google Scholar 

  22. Lv, L.Y., Zhang, Y.C., Yeung, C.H., Zhou, T.: Leaders in social networks, the delicious case. PLoS ONE 6(6), e21202 (2011)

    Google Scholar 

  23. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, K., Li, P.P., Zhu, B.P., Hu, M.Y.: Evaluation method for nod importance in directed-weighted complex networks based on PageRank. Journal of Nanjing University of Aeronautics and Astronautics 45(3), 429–434 (2013)

    Google Scholar 

  25. Bu, T., Towsley, D.: On distinguishing between internet power law topology generators. In: Proceedings of the Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), vol. 2, pp. 638–647 (2002)

    Google Scholar 

  26. Gao, C., Liu, J.N., Zhong, N.: Network immunization and virus propagation in email networks: experimental evaluation and analysis. Knowledge and Information Systems 27(2), 253–279 (2011)

    Article  MathSciNet  Google Scholar 

  27. Garas, A., Argyrakis, P., Rozenblat, C., Tomassini, M., Havli, S.: Worldwide spreading of economic crisis. New Journal of Physics 12(11), 113043 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhong, L., Gao, C., Zhang, Z., Shi, N., Huang, J. (2014). Identifying Influential Nodes in Complex Networks: A Multiple Attributes Fusion Method. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, YS. (eds) Active Media Technology. AMT 2014. Lecture Notes in Computer Science, vol 8610. Springer, Cham. https://doi.org/10.1007/978-3-319-09912-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09912-5_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09911-8

  • Online ISBN: 978-3-319-09912-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics