Skip to main content

Intervention-Driven Predictive Framework for Modeling Healthcare Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8443))

Abstract

Assessing prognostic risk is crucial to clinical care, and critically dependent on both diagnosis and medical interventions. Current methods use this augmented information to build a single prediction rule. But this may not be expressive enough to capture differential effects of interventions on prognosis. To this end, we propose a supervised, Bayesian nonparametric framework that simultaneously discovers the latent intervention groups and builds a separate prediction rule for each intervention group. The prediction rule is learnt using diagnosis data through a Bayesian logistic regression. For inference, we develop an efficient collapsed Gibbs sampler. We demonstrate that our method outperforms baselines in predicting 30-day hospital readmission using two patient cohorts - Acute Myocardial Infarction and Pneumonia. The significance of this model is that it can be applied widely across a broad range of medical prognosis tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Sarraf, M., LeBlanc, M., Giri, P., Fu, K.K., Cooper, J., Vuong, T., Forastiere, A.A., Adams, G., Sakr, W.A., Schuller, D.E., Ensley, J.F.: Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase iii randomized intergroup study. Journal of Clinical Oncology 16(4), 1310–1317 (1998)

    Google Scholar 

  2. Hannan, E.L., Racz, M.J., Walford, G., Jones, R.H., Ryan, T.J., Bennett, E., Culliford, A.T., Isom, O.W., Gold, J.P., Rose, E.A.: Long-term outcomes of coronary-artery bypass grafting versus stent implantation. New England Journal of Medicine 352(21), 2174–2183 (2005)

    Article  Google Scholar 

  3. Donzé, J., Aujesky, D., Williams, D., Schnipper, J.L.: Potentially avoidable 30-day hospital readmissions in medical patientsderivation and validation of a prediction modelpotentially avoidable 30-day hospital readmissions. JAMA Internal Medicine 173(8), 632–638 (2013)

    Article  Google Scholar 

  4. Shahbaba, B., Neal, R.: Nonlinear models using dirichlet process mixtures. The Journal of Machine Learning Research 10, 1829–1850 (2009)

    MATH  MathSciNet  Google Scholar 

  5. Jencks, S.F., Williams, M.V., Coleman, E.A.: Rehospitalizations among patients in the medicare fee-for-service program. New England Journal of Medicine 360(14), 1418–1428 (2009)

    Article  Google Scholar 

  6. Bradley, E.H., Curry, L., Horwitz, L.I., Sipsma, H., Wang, Y., Walsh, M.N., Goldmann, D., White, N., Piña, I.L., Krumholz, H.M.: Hospital strategies associated with 30-day readmission rates for patients with heart failure. Circulation: Cardiovascular Quality and Outcomes 6(4), 444–450 (2013)

    Google Scholar 

  7. Omar Hasan, M., Meltzer, D.O., Shaykevich, S.A., Bell, C.M., Kaboli, P.J., Auerbach, A.D., Wetterneck, T.B., Arora, V.M., Schnipper, J.L.: Hospital readmission in general medicine patients: a prediction model. Journal of General Internal Medicine 25(3), 211–219 (2010)

    Article  Google Scholar 

  8. van Walraven, C., Dhalla, I.A., Bell, C., Etchells, E., Stiell, I.G., Zarnke, K., Austin, P.C., Forster, A.J.: Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Canadian Medical Association Journal 182(6), 551–557 (2010)

    Article  Google Scholar 

  9. Meadem, N., Verbiest, N., Zolfaghar, K., Agarwal, J., Chin, S.-C., Roy, S.B.: Exploring preprocessing techniques for prediction of risk of readmission for congestive heart failure patients (2013)

    Google Scholar 

  10. Cholleti, S., Post, A., Gao, J., Lin, X., Bornstein, W., Cantrell, D., Saltz, J.: Leveraging derived data elements in data analytic models for understanding and predicting hospital readmissions, vol. 2012, 103 (2012)

    Google Scholar 

  11. Ferguson, T.S.: A bayesian analysis of some nonparametric problems. The Annals of Statistics, 209–230 (1973)

    Google Scholar 

  12. Sethuraman, J.: A constructive definition of dirichlet priors. DTIC Document, Tech. Rep. (1991)

    Google Scholar 

  13. Pitman, J.: Combinatorial stochastic processes, vol. 1875. Springer (1875)

    Google Scholar 

  14. Gilks, W.R.: Full conditional distributions. In: Markov Chain Monte Carlo in Practice, pp. 75–88 (1996)

    Google Scholar 

  15. Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88(421), 9–25 (1993)

    MATH  Google Scholar 

  16. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol. 1. Springer, New York (2006)

    MATH  Google Scholar 

  17. Escobar, M., West, M.: Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90(430), 577–588 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explorations 11 (2009)

    Google Scholar 

  19. Gupta, S., Phung, D., Venkatesh, S.: A Bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources. In: Proc. of SIAM Int. Conference on Data Mining (SDM), pp. 200–211 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rana, S., Gupta, S.K., Phung, D., Venkatesh, S. (2014). Intervention-Driven Predictive Framework for Modeling Healthcare Data. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8443. Springer, Cham. https://doi.org/10.1007/978-3-319-06608-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06608-0_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06607-3

  • Online ISBN: 978-3-319-06608-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics