Skip to main content

Deep Open Snake Tracker for Vessel Tracing

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Vessel tracing by modeling vascular structures in 3D medical images with centerlines and radii can provide useful information for vascular health. Existing algorithms have been developed but there are certain persistent problems such as incomplete or inaccurate vessel tracing, especially in complicated vascular beds like the intracranial arteries. We propose here a deep learning based open curve active contour model (DOST) to trace vessels in 3D images. Initial curves were proposed from a centerline segmentation neural network. Then data-driven machine knowledge was used to predict the stretching direction and vessel radius of the initial curve, while the active contour model (as human knowledge) maintained smoothness and intensity fitness of curves. Finally, considering the non-loop topology of most vasculatures, individually traced vessels were connected into a tree topology by applying a minimum spanning tree algorithm on a global connection graph. We evaluated DOST on a Time-of-Flight (TOF) MRA intracranial artery dataset and demonstrated its superior performance over existing segmentation-based and tracking-based vessel tracing methods. In addition, DOST showed strong adaptability on different imaging modalities (CTA, MR T1 SPACE) and vascular beds (coronary arteries).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callaway, C.W., Carson, A.P., Chamberlain, A.M., et al.: Heart disease and stroke statistics—2020 uspdate a report from the American heart association (2020). https://doi.org/10.1161/CIR.0000000000000757

  2. Hameeteman, K., Zuluaga, M.A., Freiman, M., et al.: Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med. Image Anal. 15(4), 477–488 (2011). https://doi.org/10.1016/j.media.2011.02.004

    Article  Google Scholar 

  3. Han, K., Chen, L., Geleri, D.B., Mossa-basha, M., Hatsukami, T., Yuan, C.: Deep-learning based significant stenosis detection from multiplanar reformatted Images of traced Intracranial arteries. In: American Society of Neuroradiology 58th Annual Meeting (2020). https://doi.org/10.1002/mrm.26961

  4. Chen, Z., Chen, L., Shirakawa, M., et al.: Intracranial vascular feature changes in time of flight MR angiography in patients undergoing carotid revascularization surgery. Magn. Reson. Imaging 75(August 2020), 45–50 (2021). https://doi.org/10.1016/j.mri.2020.10.004

  5. Liu, W., et al.: Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study. Eur. Radiol. 31(4), 2233–2241 (2020). https://doi.org/10.1007/s00330-020-07218-5

    Article  Google Scholar 

  6. Chen, L., Sun, J., Hippe, D.S., et al.: Quantitative assessment of the intracranial vasculature in an older adult population using iCafe (intracranial artery feature extraction). Neurobiol. Aging 79, 59–65 (2019). https://doi.org/10.1016/j.neurobiolaging.2019.02.027

    Article  Google Scholar 

  7. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009). https://doi.org/10.1016/j.media.2009.07.011

    Article  Google Scholar 

  8. Bibiloni, P., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recognit. 60, 949–970 (2016). https://doi.org/10.1016/j.patcog.2016.07.023

    Article  Google Scholar 

  9. Zhao, F., Chen, Y., Hou, Y., He, X.: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Syst. 25(2), 109–118 (2017). https://doi.org/10.1007/s00530-017-0580-7

    Article  Google Scholar 

  10. Chen, L., Xie, Y., Sun, J., et al.: 3D intracranial artery segmentation using a convolutional autoencoder. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 3D. IEEE (2017). https://doi.org/10.1109/BIBM.2017.8217741

  11. Wang, Y., Wei, X., Liu, F., Chen, J., Zhou, Y., Shen, W.: Deep distance transform for tubular structure segmentation in CT scans, 3833–3842 (2020)

    Google Scholar 

  12. Wang, Y., Narayanaswamy, A., Tsai, C.L., Roysam, B.: A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics 9(2–3), 193–217 (2011). https://doi.org/10.1007/s12021-011-9110-5

    Article  Google Scholar 

  13. Wolterink, J.M., Hamersvelt, R.W., Viergever, M.A., Leiner, T., Išgum, I.: Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med. Image Anal. 51, 46–60 (2019). https://doi.org/10.1016/j.media.2018.10.005

  14. Yang, H., Chen, J., Chi, Y., Xie, X., Hua, X.: Discriminative coronary artery tracking via 3D CNN in cardiac CT angiography. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 468–476. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_52

    Chapter  Google Scholar 

  15. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570

    Article  MATH  Google Scholar 

  16. Wang, Y., Narayanaswamy, A., Roysam, B.: Novel 4-D open-curve active contour and curve completion approach for automated tree structure extraction. In: Proceedings of IEEE Computer and Social Conference on Computer and Vision Pattern Recognition, pp. 1105–1112 (Published online 2011). https://doi.org/10.1109/CVPR.2011.5995620

  17. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  18. Chen, L., Dager, S.R., Shaw, D.W.W., et al.: A novel algorithm for refining cerebral vascular measurements in infants and adults. J. Neurosci. Methods. 340(April), 108751 (2020). https://doi.org/10.1016/j.jneumeth.2020.108751

    Article  Google Scholar 

  19. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM. 27(3), 236–239 (1984). https://doi.org/10.1145/357994.358023

    Article  Google Scholar 

  20. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48 (1956). https://doi.org/10.1090/S0002-9939-1956-0078686-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, W., Chen, Z., Ortega, D., et al.: Arterial elasticity, endothelial function and intracranial vascular health: a multimodal MRI study. J. Cereb. Blood Flow Metab. 0271678X2095695 (Published online 20 October 2020). https://doi.org/10.1177/0271678X20956950

  22. Schaap, M., Metz, C.T., van Walsum, T., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009). https://doi.org/10.1016/j.media.2009.06.003

    Article  Google Scholar 

  23. Chen, L., Mossa-Basha, M., Balu, N., et al.: Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing. Magn. Reson. Med. 79(6), 3229–3238 (2018). https://doi.org/10.1002/mrm.26961

    Article  Google Scholar 

  24. Chen, L., Mossa-Basha, M., Sun, J., et al.: Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): a reproducibility study. Magn Reson Imaging. 2019(57), 293–302 (2018). https://doi.org/10.1016/j.mri.2018.12.007

    Article  Google Scholar 

  25. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008(1), 1 (2008). https://doi.org/10.1155/2008/246309

    Article  Google Scholar 

  26. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195, https://doi.org/10.1016/j.media.2004.08.001

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Chen, L., Hatsukami, T., Hwang, J.-N., Yuan, C.: Automated intracranial artery labeling using a graph neural network and hierarchical refinement. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 76–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_8

    Chapter  Google Scholar 

  29. Chen, L., Sun, J., Canton, G., et al.: Automated artery localization and vessel wall segmentation using tracklet refinement and polar conversion. IEEE Access. 8, 1 (2020). https://doi.org/10.1109/access.2020.3040616

    Article  Google Scholar 

  30. Chen, L., Geleri, D.B., Sun, J., et al.: Multi-planar, multi-contrast and multi-timepoint analysis tool (MOCHA ) for intracranial vessel wall imaging review. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2020 (2020). https://doi.org/10.1002/mrm.24254.6

Download references

Acknowledgement

This work was supported by National Institute of Health under grant R01-NS092207. We are grateful for the collaborators who provided the datasets for this study, including the BRAVE investigators, Harborview Medical Center, and the public data from Erasmus MC, Rotterdam. We gratefully acknowledge the support of NVIDIA Corporation for donating the Titan GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 575 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L. et al. (2021). Deep Open Snake Tracker for Vessel Tracing. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics