Skip to main content

Automated Intracranial Artery Labeling Using a Graph Neural Network and Hierarchical Refinement

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Automatically labeling intracranial arteries (ICA) with their anatomical names is beneficial for feature extraction and detailed analysis of intracranial vascular structures. There are significant variations in the ICA due to natural and pathological causes, making it challenging for automated labeling. However, the existing public dataset for evaluation of anatomical labeling is limited. We construct a comprehensive dataset with 729 Magnetic Resonance Angiography scans and propose a Graph Neural Network (GNN) method to label arteries by classifying types of nodes and edges in an attributed relational graph. In addition, a hierarchical refinement framework is developed for further improving the GNN outputs to incorporate structural and relational knowledge about the ICA. Our method achieved a node labeling accuracy of 97.5%, and 63.8% of scans were correctly labeled for all Circle of Willis nodes, on a testing set of 105 scans with both healthy and diseased subjects. This is a significant improvement over available state-of-the-art methods. Automatic artery labeling is promising to minimize manual effort in characterizing the complicated ICA networks and provides valuable information for the identification of geometric risk factors of vascular disease. Our code and dataset are available at https://github.com/clatfd/GNN-ART-LABEL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kayembe, K.N., Sasahara, M., Hazama, F.: Cerebral aneurysms and variations in the circle of Willis. Stroke 15, 846–850 (1984)

    Article  Google Scholar 

  2. Alpers, B.J., Berry, R.G., Paddison, R.M.: Anatomical studies of the circle of willis in normal brain. Arch. Neurol. Psychiatry. 81, 409–418 (1959)

    Article  Google Scholar 

  3. Chen, L., et al.: Quantitative intracranial vasculature assessment to detect dementia using the intra-Cranial Artery Feature Extraction (iCafe) technique. In: Proc. Annu. Meet. Int. Soc. Magn. Reson. Med. Palais des congrès Montréal, Montréal, QC, Canada May, pp. 11–16 (2019)

    Google Scholar 

  4. Alpers, B.J., Berry, R.G.: Circle of willis in cerebral vascular disorders. Anat. Struct. Arch. Neurol. 8, 398–402 (1963)

    Article  Google Scholar 

  5. Ustabaşıoğlu, F.E.: Magnetic resonance angiographic evaluation of anatomic variations of the circle of willis. Med. J. Haydarpaşa Numune Training Res. Hosp. 59, 291–295 (2018)

    Google Scholar 

  6. Bullitt, E., et al.: Vessel tortuosity and brain tumor malignancy: a blinded study. Acad. Radiol. 12, 1232–1240 (2005)

    Article  Google Scholar 

  7. Takemura, A., Suzuki, M., Harauchi, H., Okumura, Y.: Automatic anatomical labeling method of cerebral arteries in MR-angiography data set. Japanese J. Med. Phys. 26, 187–198 (2006)

    Google Scholar 

  8. Dunås, T., Wåhlin, A., Ambarki, K., Zarrinkoob, L., Malm, J., Eklund, A.: A stereotactic probabilistic atlas for the major cerebral arteries. Neuroinformatics 15(1), 101–110 (2016). https://doi.org/10.1007/s12021-016-9320-y

    Article  Google Scholar 

  9. Dunås, T., et al.: Automatic labeling of cerebral arteries in magnetic resonance angiography. Magn. Reson. Mater. Phys., Biol. Med. 29(1), 39–47 (2015). https://doi.org/10.1007/s10334-015-0512-5

    Article  Google Scholar 

  10. Bilgel, M., Roy, S., Carass, A., Nyquist, P.A., Prince, J.L.: Automated anatomical labeling of the cerebral arteries using belief propagation. Med. Imaging 2013 Image Process. 8669, 866918 (2013)

    Google Scholar 

  11. Bogunović, H., Pozo, J.M., Cárdenes, R., Frangi, A.F.: Automatic identification of internal carotid artery from 3DRA images. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 5343–5346. IEEE (2010)

    Google Scholar 

  12. Bogunović, H., Pozo, J.M., Cárdenes, R., Frangi, A.F.: Anatomical labeling of the anterior circulation of the circle of willis using maximum a posteriori classification. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 330–337. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_41

    Chapter  Google Scholar 

  13. Bogunović, H., Pozo, J.M., Cardenes, R., Roman, L.S., Frangi, A.F.: Anatomical labeling of the circle of willis using maximum a posteriori probability estimation. IEEE Trans. Med. Imaging. 32, 1587–1599 (2013)

    Google Scholar 

  14. Robben, D., et al.: Simultaneous segmentation and anatomical labeling of the cerebral vasculature. Med. Image Anal. 32, 201–215 (2016)

    Article  Google Scholar 

  15. Zhou, J., et al.: Graph neural networks: a review of methods and applications, pp. 1–22 (2018)

    Google Scholar 

  16. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv: 1806.01261, pp. 1–40 (2018)

    Google Scholar 

  17. Zhai, Z., et al.: Linking convolutional neural networks with graph convolutional networks: application in pulmonary artery-vein separation. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 36–43. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_5

    Chapter  Google Scholar 

  18. Wolterink, J.M., Leiner, T., Išgum, I.: Graph convolutional networks for coronary artery segmentation in cardiac CT angiography. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 62–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_8

    Chapter  Google Scholar 

  19. Chen, L., et al.: Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing. Magn. Reson. Med. 79, 3229–3238 (2018)

    Article  Google Scholar 

  20. Chen, L., et al.: Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): a reproducibility study. Magn. Reson. Imaging 57, 293–302 (2018)

    Article  Google Scholar 

  21. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. arXiv:1704.01212v2, (2017)

  22. Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)

    Article  Google Scholar 

  23. Chen, L., et al.: Quantitative assessment of the intracranial vasculature in an older adult population using iCafe (intraCranial Artery Feature Extraction). Neurobiol. Aging 79, 59–65 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health under grant R01-NS092207. We are grateful for the collaborators who provided the datasets for this study, including the CROP and BRAVE investigators, and researchers from the University of Arizona, USA, Beijing Anzhen hospital, China, and Tsinghua University, China and the public data from The University of North Carolina at Chapel Hill (distributed by the MIDAS Data Server at Kitware Inc.). We acknowledge NIVIDIA for providing the GPU used for training the neural network model.

Our code and dataset are available at https://github.com/clatfd/GNN-ART-LABEL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yuan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Hatsukami, T., Hwang, JN., Yuan, C. (2020). Automated Intracranial Artery Labeling Using a Graph Neural Network and Hierarchical Refinement. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics