Skip to main content

Performance Comparison of Type-1 and Type-2 Neuro-Fuzzy Controllers for a Flexible Joint Manipulator

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11953))

Abstract

Flexible joint manipulators are extensively used in several industries and precise control of their nonlinear dynamics has proven to be a challenging task. In this work, we want to compare two intelligent controllers by proposing two Takagi-Sugeno-Kang Neuro-Fuzzy Approaches (Type-1 and Type-2) to control a flexible joint. For both controllers, The inverse models are found using identification techniques, then they are put in series as inverse controllers to control the flexible joint in an online structure. Interval weights are trained by gradient descent approaches using backpropagation algorithms. Results reveal that, without any knowledge about the dynamic of the robot, the methods can control the flexible joint which is highly unstable. As illustrated in result section, One level more fuzziness of Type-2 in compare to type-1 fuzzy controllers helps this controller to more effectively deals with information from a knowledge base. The proposed models can effectively handle uncertainties arising from friction and other structural nonlinearities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siciliano, B.: Control in robotics: open problems and future directions. In: IEEE International Conference on Control Applications, vol. 1, no. 1, pp. 81–85 (1998)

    Google Scholar 

  2. Khorasani, K.: Adaptive control of FJR. IEEE J. Robot. Autom. 8(2), 250–267 (1992)

    Article  Google Scholar 

  3. Long, Z., Yuan, Y., Xu, Y., Du, S.: High-accuracy positioning of lathe servo system using fuzzy controllers based on variable universe of discourse. Int. J. Smart Sens. Intell. Syst. 7(3), 1114–1133 (2014)

    Google Scholar 

  4. Ho, W.H., Chou, J.H.: Design of optimal controllers for Takagi-Sugeno fuzzy-model-based systems. IEEE Trans. Syst. Man Cybern. A 37(3), 329–339 (2007)

    Article  Google Scholar 

  5. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  6. Hagras, H.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Article  Google Scholar 

  7. Liang, Q., Mendel, J.M.: Interval T2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  8. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  9. Wang, C.H., Cheng, C.S., Lee, T.T.: Dynamical optimal training for interval T2 fuzzy neural network (T2NFN). IEEE Trans. Syst. Man Cybern. 1462–1477 (2004)

    Google Scholar 

  10. Abiyev, R.H., Kaynak, O., Alshanableh, T., Mamedov, M.: A T2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization. Appl. Soft Comput. 11, 1396–1406 (2011)

    Article  Google Scholar 

  11. Lin, C.T., Pal, N.R., Wu, S.L., Liu, Y.T., Lin, Y.Y.: An interval T2 neural fuzzy system for online system identification and feature elimination. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1442–1455 (2015)

    Article  MathSciNet  Google Scholar 

  12. Castro, J.R., Castillo, O., Melin, P., Rodriguez-Diaz, A.: A hybrid learning algorithm for a class of interval T2 fuzzy neural networks. J. Inf. Sci. 179, 2175–2193 (2009)

    Article  Google Scholar 

  13. Martinez, R., Castillo, O., Aguilar, L.T.: Optimization of interval T2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. J. Inf. Sci. 179, 2158–2174 (2009)

    Article  Google Scholar 

  14. Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval T2 fuzzy logic. J. Soft Comput. 20(3), 1057–1070 (2016)

    Article  Google Scholar 

  15. Moodi, H., Farrokhi, M.: Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent. Int. J. Appl. Math. Comput. Sci. 23(4), 711–723 (2013)

    Article  MathSciNet  Google Scholar 

  16. Khosravi, A., Nahavandi, S., Creighton, D., Srinivasan, D.: Interval Type-2 fuzzy logic systems for load forecasting. IEEE Trans. Power Syst. 27(3), 1274–1282 (2012)

    Article  Google Scholar 

  17. Hagras, H.A.: A hierarchical T2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2014)

    Article  Google Scholar 

  18. Lin, T.C.: Based on interval T2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4084–4099 (2010)

    Article  MathSciNet  Google Scholar 

  19. Clavo-Rolle, J.L., Fontelna-Romero, O., Perez-Sanchez, B., Guijarro-Berdinas, B.: Adaptive inverse control using an online learning algorithm for neural networks. Informatica 25(3), 401–414 (2014)

    Article  Google Scholar 

  20. Li, C.H.D., Yi, J.Q., Yu, Y., Zhao, D.B.: Inverse control of cable-driven parallel mechanism using T2 fuzzy neural network. Acta Automatica Sinica 36(3), 459–464 (2010)

    Google Scholar 

  21. Kadhim, H.H.: Self-learning of ANFIS inverse control using iterative learning technique. Int. J. Comput. Appl. 21(8), 24–29 (2011)

    Google Scholar 

  22. Sang, X., Liu, X.: An analytical solution to the TOPSIS model with interval T2 fuzzy sets. Soft Comput. 20, 1213–1230 (2015)

    Article  Google Scholar 

  23. Akbari, M.E., Badamchizadeh, M.A., Poor, M.A.: Implementation of a fuzzy TSK controller for a flexible joint robot. J. Discret. Dyn. Nat. Soc. 2012 (2012)

    Article  Google Scholar 

  24. Akbari, M.E., Alizadeh, G., Khanmohammadi, S., Hassanzadeh, I., Mirzaei, M., Badamchizadeh, M.A.: Design and implementation of a nonlinear \(H_{\infty }\) tracking controller for high elastic joint robot with compensated friction. Int. J. Eng. Sci. Technol. 2, 7691–7702 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Afshar Shamsi Jokandan , Abbas Khosravi or Saeid Nahavandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jokandan, A.S., Khosravi, A., Nahavandi, S. (2019). Performance Comparison of Type-1 and Type-2 Neuro-Fuzzy Controllers for a Flexible Joint Manipulator. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11953. Springer, Cham. https://doi.org/10.1007/978-3-030-36708-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36708-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36707-7

  • Online ISBN: 978-3-030-36708-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics