Skip to main content

Deep Imitation Learning: The Impact of Depth on Policy Performance

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Abstract

This paper investigates the impact of network depth on the performance of imitation learning applied in the development of an end- to-end policy for controlling autonomous cars. The policy generates optimal steering commands from raw images taken from cameras attached to the car in a simulated environment. A convolutional neural network (CNN) is used to find the mapping between inputs (car images) and the desired steering angle. The CNN architecture is modified by changing the number of convolutional layers as well as the filter size. It is observed that the learned policy is capable of driving the car in the autonomous mode purely using visual information. In addition, simulation results indicate that deeper CNNs outperform shallower CNNs for learning and mimicking the human driver’s behavior. Surprisingly, the best performance is not achieved by the most complex CNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter aerobatics through apprenticeship learning. Int. J. Robot. Res. 29(13), 1608–1639 (2010). https://doi.org/10.1177/0278364910371999

    Article  Google Scholar 

  2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  3. Bojarski, M., et al.: End to end learning for self-driving cars (2016)

    Google Scholar 

  4. Cardamone, L., Loiacono, D., Lanzi, P.L.: Learning drivers for TORCS through imitation using supervised methods. In: 2009 IEEE Symposium on Computational Intelligence and Games, pp. 148–155 (7–10)

    Google Scholar 

  5. Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Sig. Process. 7, 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  6. Gandhi, D., Pinto, L., Gupta, A.: Learning to fly by crashing (2017)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of learning methods. ACM Comput. Surv. 50(2), 1–35 (2017). https://doi.org/10.1145/3054912

    Article  Google Scholar 

  9. Innocenti, C., Lindn, H., Panahandeh, G., Svensson, L., Mohammadiha, N.: Imitation learning for vision-based lane keeping assistance (2017)

    Google Scholar 

  10. Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H., Nahavandi, S.: Parallel deep solutions for image retrieval from imbalanced medical imaging archives. Appl. Soft Comput. 63, 197–205 (2018)

    Article  Google Scholar 

  11. Khatami, A., Khosravi, A., Nguyen, T., Lim, C.P., Nahavandi, S.: Medical image analysis using wavelet transform and deep belief networks. Expert Syst. Appl. 86, 190–198 (2017)

    Article  Google Scholar 

  12. Khosravi, A., Nahavandi, S., Creighton, D.: A neural network-GARCH-based method for construction of prediction intervals. Electr. Power Syst. Res. 96, 185–193 (2013)

    Article  Google Scholar 

  13. Khosravi, A., Nahavandi, S., Creighton, D.: Quantifying uncertainties of neural network-based electricity price forecasts. Appl. Energy 112, 120–129 (2013)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105. Curran Associates Inc., Lake Tahoe (2012)

    Google Scholar 

  15. Li, G., Mueller, M., Casser, V., Smith, N., Michels, D.L., Ghanem, B.: Teaching UAVs to race with observational imitation learning (2018)

    Google Scholar 

  16. Müller, M., Casser, V., Smith, N., Michels, D.L., Ghanem, B.: Teaching UAVs to race using Sim4CV (2017)

    Google Scholar 

  17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015)

    Article  Google Scholar 

  18. Nahavandi, S.: Trusted autonomy between humans and robots: toward human-on-the-loop in robotics and autonomous systems. IEEE Syst. Man, Cybern. Mag. 3(1), 10–17 (2017)

    Article  Google Scholar 

  19. Narayanan, K.K., Posada, L.F., Hoffmann, F., Bertram, T.: Robot programming by demonstration. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI), vol. 6472, pp. 288–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17319-6_28

    Chapter  Google Scholar 

  20. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transformations: theory and application to reward shaping. In: Proceedings of the Sixteenth International Conference on Machine Learning, pp. 278–287. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  21. Nguyen, T., Khosravi, A., Creighton, D., Nahavandi, S.: Medical data classification using interval type-2 fuzzy logic system and wavelets. Appl. Soft Comput. 30, 812–822 (2015)

    Article  Google Scholar 

  22. Poulsen, A.P., Thorhauge, M., Funch, M.H., Risi, S.: DLNE: a hybridization of deep learning and neuroevolution for visual control. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG), pp. 256–263 (2017)

    Google Scholar 

  23. Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of reactive rules in multi player computer games based on imitation. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 744–755. Springer, Heidelberg (2005). https://doi.org/10.1007/11539117_105

    Chapter  Google Scholar 

  24. Salaken, S.M., Khosravi, A., Khatami, A., Nahavandi, S., Hosen, M.A.: Lung cancer classification using deep learned features on low population dataset. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5. IEEE (2017)

    Google Scholar 

  25. Saleh, K., Hossny, M., Nahavandi, S.: Intent prediction of vulnerable road users from motion trajectories using stacked LSTM network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 327–332. IEEE (2017)

    Google Scholar 

  26. Saleh, K., Hossny, M., Nahavandi, S.: Towards trusted autonomous vehicles from vulnerable road users perspective. In: 2017 Annual IEEE International Systems Conference (SysCon), pp. 1–7. IEEE (2017)

    Google Scholar 

  27. Saunders, J., Nehaniv, C.L., Dautenhahn, K.: Teaching robots by moulding behavior and scaffolding the environment. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, Salt Lake City, Utah, USA, pp. 118–125. ACM (2006). https://doi.org/10.1145/1121241.1121263

  28. Silver, D., Bagnell, J.A., Stentz, A.: Applied imitation learning for autonomous navigation in complex natural terrain. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics, vol. 62, pp. 249–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13408-1_23

    Chapter  Google Scholar 

  29. Zhang, T., et al.: Deep imitation learning for complex manipulation tasks from virtual reality teleoperation (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parham M. Kebria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kebria, P.M. et al. (2018). Deep Imitation Learning: The Impact of Depth on Policy Performance. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics