Skip to main content

Graft–Artery Junctions: Design Optimization and CAD Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

Designing and manufacturing of vascular prosthesis for arterial bypass grafts is a very complex problem. The process involves the selection of suitable geometry, materials of appropriate characteristics, and manufacturing technique capable of constructing prosthesis in a cost-effective manner. In this chapter, all engineering aspects related to the design and optimization of an artificial graft are presented and discussed. These aspects include CAD design of the graft, in vitro hemodynamic analysis to ensure good mechanical integrity and functionality, and optimization of the manufacturing techniques. Brief discussion is also given on the endothelization and vascularization of the artificial vessels and the future directions of the development of synthetic vessels for human implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim BS, Cho SW, Kim IK, Kang JM, Song KW, Kim HS, Park CH, Yoo KJ (2009) Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng A 15(4):901–912

    Article  Google Scholar 

  2. Zheng JW, Zhong LP, Ye WM, Zhang ZY (2009) Autologous external jugular vein: a potential vascular graft for carotid artery reconstruction. Med Hypotheses 72(5):551–552

    Article  Google Scholar 

  3. McKee JA, Banik SSR, Boyer MJ, Hamad NM, Lawson JH, Niklason LE, Counter CM (2003) Human arteries engineered in vitro. EMBO Rep 4(6):633–638

    Article  CAS  Google Scholar 

  4. Campbell GR, Campbell JH (2007) Development of tissue engineered vascular grafts. Curr Pharm Biotechnol 8(1):43–50

    Article  CAS  Google Scholar 

  5. Isenberg BC, Williams C, Tranquillo RT (2006) Small-diameter artificial arteries engineered in vitro. Circ Res 98(1):25–35

    Article  CAS  Google Scholar 

  6. McClure MJ, Sell SA, Barnes CP, Bowen WC, Bowlin GL (2008) Cross-linking electrospun polydioxanone-soluble elastin blends: material characterization. J Eng Fiber Fabric 3(1):1–10

    Google Scholar 

  7. Kouhi E, Morsi YS, Masood SH (2008) Haemodynamic analysis of coronary artery bypass grafting in a non-linear deformable artery and Newtonian pulsatile blood flow. Proceedings of the Institution of Mechanical Engineers, part H. J Eng Med 222(8):1273–1287

    Article  CAS  Google Scholar 

  8. Kouhi E, Morsi Y, Masood SH (2009) The effect of arterial wall deformability on hemodynamics of CABG. In: ASME international mechanical engineering congress and exposition proceedings, 2009

    Google Scholar 

  9. Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 115(4B):588–594

    Google Scholar 

  10. Do H, Owida AA, Yang W, Morsi YS (2010) Numerical simulation of the haemodynamics in end-to-side anastomoses. Int J Num Meth Fluids

    Google Scholar 

  11. Owida A, Do H, Yang W, Morsi YS (2010) PIV measurements and numerical validation of end-to-side anastomosis. J Mech Med Biol 10(1):123–138

    Article  Google Scholar 

  12. Mahnken AH, Spuentrup E, Niethammer M, Buecker A, Boese J, Wildberger JE, Flohr T, Sinha AM, Krombach GA, Gunther RW (2003) Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol 44(6):604–611

    Google Scholar 

  13. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modelling of fluid–structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Num Meth Fluid 54(6–8):901–922

    Article  Google Scholar 

  14. Freshwater IJ, Morsi YS, Lai T (2006) The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Proc Inst Mech Eng H J Eng Med 220(7):743–757

    Article  CAS  Google Scholar 

  15. Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organ 10(2):96–103

    Article  Google Scholar 

  16. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Meth Appl Mech Eng 195(41–43):5685–5706

    Article  Google Scholar 

  17. Do H (2011) Fluid structure interaction numerical simulation of coronary artery bypass graft, end-to-side configurations. PhD Thesis, Swinburne University of Technology, Swinburne

    Google Scholar 

  18. White SS, Zarins CK, Giddens DP, Bassiouny H, Loth F, Jones SA, Glagov S (1993) Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length. J Biomech Eng 115(1):104–111

    Article  CAS  Google Scholar 

  19. Keynton RS, Rittgers SE, Shu MC (1991) The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: an in vitro model study. J Biomech Eng 113(4):458–463

    Article  CAS  Google Scholar 

  20. Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S, Houlind K, Yoganathan AP (1995) Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J Am Coll Cardiol 26(1):224–238

    Article  CAS  Google Scholar 

  21. Gao ZB, Pandya S, Hosein N, Sacks MS, Hwang NHC (2000) Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry. J Biomech 33(2):199–207

    Article  CAS  Google Scholar 

  22. Owida AM (2009) In vitro study of haemodynamic stresses and endothelialisation of artificial coronary arteries. PhD Thesis, Swinburne University of Technology, Swinburne

    Google Scholar 

  23. Black J, Hastings G (1998) Handbook of biomaterial properties. Chapman & Hall, London

    Google Scholar 

  24. Bordenave L, Fernandez P, Remy-Zolghadri M, Villars S, Daculsi R, Midy D (2005) In vitro endothelialized ePTFE prostheses: clinical update 20 years after the first realization. Clin Hemorheol Microcirc 33(3):227–234

    CAS  Google Scholar 

  25. Fink H (2009) Artificial blood vessels, studies on endothelial cell and blood interactions with bacterial cellulose. Doctor of Philosophy (Medicine), University of Gothenburg, Sahlgrenska Academy, Gothenburg

    Google Scholar 

  26. Gourd C, Wootton J, Uber B, Loening K, Weiss S (2008) Coronary angiogenesis: can it mend broken hearts? http://biomed.brown.edu/Courses/BI108/BI108_2003_Groups/Coronary_Angiogenesis/default.html

  27. Xue L, Greisler H (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37(2):472–480

    Article  Google Scholar 

  28. Walpoth BH, Rogulenko R, Tikhvinskaia E, Gogolewski S, Schaffner T, Hess OM, Althaus U (1998) Improvement of patency rate in heparin-coated small synthetic vascular grafts. Circulation 98(19 Suppl):II319–II323; discussion II324

    Google Scholar 

  29. Bos GW, Poot AA, Beugeling T, van Aken WG, Feijen J (1998) Small-diameter vascular graft prostheses: current status. Arch Physiol Biochem 106(2):100–115

    Article  CAS  Google Scholar 

  30. Greisler HP, Cziperle DJ, Kim DU, Garfield JD, Petsikas D, Murchan PM, Applegren EO, Drohan W, Burgess WH (1992) Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112(2):244–254; discussion 254–255

    Google Scholar 

  31. Gray JL, Kang SS, Zenni GC, Kim DU, Kim PI, Burgess WH, Drohan W, Winkles JA, Haudenschild CC, Greisler HP (1994) FGF-1 affixation stimulates ePTFE endothelialization without intimal hyperplasia. J Surg Res 57(5):596–612

    Article  CAS  Google Scholar 

  32. Zahedmanesh H, MacKle JN, Sellborn A, Drotz K, Bodin A, Gatenholm P, Lally C (2011) Bacterial cellulose as a potential vascular graft: Mechanical characterization and constitutive model development. J Biomed Mater Res B Appl Biomater 97B(1):105–113

    Google Scholar 

  33. Greisler HP (1982) Arterial regeneration over absorbable prostheses. Arch Surg 117(11):1425–1431

    Article  CAS  Google Scholar 

  34. Greisler HP, Kim DU, Price JB, Voorhees AB Jr (1985) Arterial regenerative activity after prosthetic implantation. Arch Surg 120(3):315–323

    Article  CAS  Google Scholar 

  35. Pachence J, Kohn J (2000) Biodegradable polymers. In: Lanza R, Vacanti J (ed) Principles of tissue engineering. Academic Press, San Diego, CA

    Google Scholar 

  36. Morsi Y (2011) Tissue engineering of heart valve current and future directions. Nova Science Publishers (in press)

    Google Scholar 

  37. Greisler HP, Ellinger J, Schwarcz TH, Golan J, Raymond RM, Kim DU (1987) Arterial regeneration over polydioxanone prostheses in the rabbit. Arch Surg 122(6):715–721

    Article  CAS  Google Scholar 

  38. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378

    Article  CAS  Google Scholar 

  39. Morsi YS, Wong CS, Patel SS (2008) Virtual prototyping of biomanufacturing in medical applications conventional manufacturing processes for three-dimensional scaffolds. In: Bidanda B, Bartolo P (eds) Virtual prototyping and bio manufacturing in medical applications. Springer, New York, 129–148

    Google Scholar 

  40. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  CAS  Google Scholar 

  41. Masood SH, Singh JP, Morsi Y (2005) The design and manufacturing of porous scaffolds for tissue engineering using rapid prototyping. Int J Adv Manuf Technol 27(3–4):415–420

    Article  Google Scholar 

  42. Ramakrishna RMS (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12(3):435–447

    Article  Google Scholar 

  43. Cui W, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11(1):014108

    Article  Google Scholar 

  44. He W, Ma Z, Wee ET, Yi XD, Robless PA, Thiam CL, Ramakrishna S (2009) Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. J Biomed Mater Res A 90(1):205–216

    Google Scholar 

  45. Chen Z, Mo X, Qing F (2007) Electrospinning of collagen-chitosan complex. Mater Lett 61(16):3490–3494

    Article  CAS  Google Scholar 

  46. Mo X, Chen Z, Weber HJ (2007) Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering. Front Mater Sci China 1(1):20–23

    Article  Google Scholar 

  47. Venugopal J, Ramakrishna S (2005) Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol 125(3):147–158

    Article  CAS  Google Scholar 

  48. Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25(10):1883–1890

    Article  CAS  Google Scholar 

  49. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138

    Article  CAS  Google Scholar 

  50. Centola M, Rainer A, Spadaccio C, De Porcellinis S, Genovese JA, Trombetta M (2010) Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2(1):014102

    Article  CAS  Google Scholar 

  51. Owida A, Sheetal Patel S, Morsi Y, Mo X (2011) Artery vessel fabrication using the combined fused deposition modeling and electrospinning techniques. Rapid Prototyping J 17(1):37–44

    Google Scholar 

  52. Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG (2006) Modulation of anisotropy in electrospun tissue-engineering scaffolds: analysis of fiber alignment by the fast Fourier transform. Biomaterials 27(32):5524–5534

    Article  CAS  Google Scholar 

  53. Drury JL, David DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337

    Article  CAS  Google Scholar 

  54. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322

    CAS  Google Scholar 

  55. Xiao H, Yue Z, Henry JD, Tao LL (2007) Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitroculture of chondrocytes. Tissue Eng 13:2645–2652

    Article  Google Scholar 

  56. Liao E, Yaszemski M, Krebsbach P, Hollister S (2007) Tissue-engineered cartilage constructs using composite hyaluronic acidcollagen i hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng 13(3):537–550

    Article  CAS  Google Scholar 

  57. Rotmans JI, Heyligers JMM, Stroes ESG, Pasterkamp G (2006) Endothelial progenitor cell-seeded grafts: rash and risky. Can J Cardiol 22(13):1113–1116

    Article  Google Scholar 

  58. Herring M, Gardner A, Glover J (1984) Seeding human arterial prostheses with mechanically derived endothelium. The detrimental effect of smoking. J Vasc Surg 1(2):279–289

    CAS  Google Scholar 

  59. Rosenman JE, Kempczinski RF, Pearce WH, Silberstein EB (1985) Kinetics of endothelial cell seeding. J Vasc Surg 2(6):778–784

    CAS  Google Scholar 

  60. Hashi CK, Derugin N, Janairo RRR, Lee R, Schultz D, Lotz J, Li S (2010) Antithrombogenic modification of small-diameter microfibrous vascular grafts. Arterioscler Thromb Vasc Biol 30(8):1621–1627

    Article  CAS  Google Scholar 

  61. Heyligers JM, Arts CH, Verhagen HJ, de Groot PG, Moll FL (2005) Improving small-diameter vascular grafts: from the application of an endothelial cell lining to the construction of a tissue-engineered blood vessel. Ann Vasc Surg 19(3):448–456

    Article  CAS  Google Scholar 

  62. Matsuda T (2004) Recent progress of vascular graft engineering in Japan. Int Soc Artif Organ 28(1):8

    Google Scholar 

  63. Shin'oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533

    Google Scholar 

  64. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400

    Article  CAS  Google Scholar 

  65. L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12(1):47–56

    Google Scholar 

  66. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284(5413):489–493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yos S. Morsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Morsi, Y.S., Owida, A.A., Do, H., Arefin, M.S., Wang, X. (2012). Graft–Artery Junctions: Design Optimization and CAD Development. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics