Skip to main content

Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM)

  • Protocol
  • First Online:
Cancer Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1928))

Abstract

The mitochondrial membrane potential (Δψm) drives the generation of ATP by mitochondria. Interestingly, Δψm is higher in many cancer cells comparted to healthy noncancerous cell types, providing a unique metabolic marker. This feature has also been exploited for therapeutic use by utilizing drugs that specifically accumulate in the mitochondria of cancer cells with high Δψm. As such, the assessment of Δψm can provide very useful information as to the metabolic state of a cancer cell, as well as its potential for malignancy. In addition, the measurement of Δψm can also be used to test the ability of novel anticancer therapies to disrupt mitochondrial metabolism and cause cell death.

Here, we outline two methods for assessing Δψm in cancer cells using confocal microscopy and the potentiometric fluorescent dye tetramethylrhodamine methyl ester (TMRM). In the first protocol, we describe a technique to quantitatively measure Δψm, which can be used to compare Δψm between different cell types. In the second protocol, we describe a technique for assessing changes to Δψm over time, which can be used to determine the effectiveness of different therapeutic compounds or drugs in modulating mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  Google Scholar 

  2. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50:98–115

    Article  CAS  Google Scholar 

  3. Chinopoulos C, Tretter L, Adam-Vizi V (1999) Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase. J Neurochem 73:220–228

    Article  CAS  Google Scholar 

  4. Rottenberg H, Wu S (1998) Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta 1404:393–404

    Article  CAS  Google Scholar 

  5. McKenzie M, Liolitsa D, Akinshina N, Campanella M, Sisodiya S, Hargreaves I, Nirmalananthan N, Sweeney MG, Abou-Sleiman PM, Wood NW, Hanna MG, Duchen MR (2007) Mitochondrial ND5 Gene Variation Associated with Encephalomyopathy and Mitochondrial ATP Consumption. J Biol Chem 282:36845–36852

    Article  CAS  Google Scholar 

  6. McKenzie M, Duchen MR (2016) Impaired Cellular Bioenergetics Causes Mitochondrial Calcium Handling Defects in MT-ND5 Mutant Cybrids. PLoS One 11:e0154371

    Article  Google Scholar 

  7. Zhang X, Lemasters JJ (2013) Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radic Biol Med 63:243–253

    Article  CAS  Google Scholar 

  8. Zhang BB, Wang DG, Guo FF, Xuan C (2015) Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Fam Cancer 14:19–23

    Article  CAS  Google Scholar 

  9. Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, Yu SC, Qian GS (2011) Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 129:820–831

    Article  CAS  Google Scholar 

  10. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  Google Scholar 

  11. Lamb R, Ozsvari B, Bonuccelli G, Smith DL, Pestell RG, Martinez-Outschoorn UE, Clarke RB, Sotgia F, Lisanti MP (2015) Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget 6:21892–21905

    PubMed  PubMed Central  Google Scholar 

  12. Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J, Rothenberg M, Smetzer L, Cramer J, Collins W, Von Hoff DD, Eckhardt SG (2000) A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res 6:42–49

    CAS  PubMed  Google Scholar 

  13. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona E, Specchia G, Sica S, Divona M, Levis A, Fiedler W, Cerqui E, Breccia M, Fioritoni G, Salih HR, Cazzola M, Melillo L, Carella AM, Brandts CH, Morra E, von Lilienfeld-Toal M, Hertenstein B, Wattad M, Lubbert M, Hanel M, Schmitz N, Link H, Kropp MG, Rambaldi A, La Nasa G, Luppi M, Ciceri F, Finizio O, Venditti A, Fabbiano F, Dohner K, Sauer M, Ganser A, Amadori S, Mandelli F, Dohner H, Ehninger G, Schlenk RF, Platzbecker U (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369:111–121

    Article  CAS  Google Scholar 

  14. Lim SC, Carey KT, McKenzie M (2015) Anti-Cancer analogues ME-143 and ME-344 exert toxicity by directly inhibiting mitochondrial NADH:ubiquinone oxidoreductase (Complex I). Am J Cancer Res 5:689–701

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Duchen MR, Surin A, Jacobson J (2003) Imaging mitochondrial function in intact cells. Methods Enzymol 361:353–389

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Monash Health Translational Precinct (MHTP) Micro Imaging Platform and the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McKenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Creed, S., McKenzie, M. (2019). Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9027-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9026-9

  • Online ISBN: 978-1-4939-9027-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics