Skip to main content

Chemically Defined Neural Conversion of Human Pluripotent Stem Cells

  • Protocol
  • First Online:
Neural Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1919))

  • 2407 Accesses

Abstract

Human pluripotent stem cells (hPSCs) are characterized by their ability to self-renew and differentiate into any cell type of the human body. To fully utilize the potential of hPSCs for translational research and clinical applications, it is critical to develop rigorous cell differentiation protocols under feeder-free conditions that are efficient, reproducible, and scalable for high-throughput projects. Focusing on neural conversion of hPSCs, here we describe robust small molecule-based procedures that generate neural stem cells (NSCs) in less than a week under chemically defined conditions. These protocols can be used to dissect the mechanisms of neural lineage entry and to further develop systematic protocols that produce the cellular diversity of the central nervous system at industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocyst. Science 282:1145ā€“1147

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861ā€“872

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134ā€“1140

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Zhang SC, Wernig M, Duncan ID, BrĆ¼stle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129ā€“1133

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215ā€“221

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152ā€“165

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31ā€“40

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543ā€“12548

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269ā€“1280

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25:411ā€“418

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495ā€“4509

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107ā€“117

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3:196ā€“206

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275ā€“280

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Singec I, Crain AM, Hou J, Tobe BT, Talantova M, Winquist AA, Doctor KS, Choy J, Huang X, La Monaca E, Horn DM, Wolf DA, Lipton SA, Gutierrez GJ, Brill LM, Snyder EY (2016) Quantitative analysis of human pluripotency and neural specification by in-depth (phospho)proteomic profiling. Stem Cell Reports 7:527ā€“542

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185ā€“190

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568ā€“574

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cell in defined conditions. Nat Biotechnol 24:185ā€“187

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637ā€“646

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, Kawase E, Sekiguchi K, Nakatsuji N, Suemori H (2008) Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 375:27ā€“32

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424ā€“429

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207ā€“215

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Beers J, Gulbranson DR, George N, Siniscalchi LI, Jones J, Thomson JA, Chen G (2013) Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture medium. Nat Protoc 7:2029ā€“2040

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Lippmann ES, Estevez-Silva MC, Ashton RS (2014) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32:1032ā€“1042

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Tchieu J, Zimmer B, Fattah F, Amin S, Zeltner N, Chen S, Studer L (2017) A modular platform for differentiation of human PSCs into all major ectodermal lineages. Cell Stem Cell 21:399ā€“410

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT, Barbe L, Sermon K, Spits C (2016) Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Reports 6:330ā€“341

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgment

We thank all our colleagues at the NIH National Center for Advancing Translational Sciences (NCATS) for their collaboration and the NIH Common Fund (Regenerative Medicine Program) for funding the Stem Cell Translation Laboratory (SCTL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas SingeƧ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Y. et al. (2019). Chemically Defined Neural Conversion of Human Pluripotent Stem Cells. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics