Skip to main content

Analysis of Mitochondrial DNA in Induced Pluripotent and Embryonic Stem Cells

  • Protocol
Cell Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1330))

Abstract

The mitochondrial genome has a major role to play in establishing and maintaining pluripotency. Furthermore, mitochondrial DNA (mtDNA) copy is strictly regulated during differentiation. Undifferentiated, pluripotent cells possess fewer than 300 copies of mtDNA, which establishes the mtDNA set point and promotes cell proliferation and, as a result, these cells rely on glycolysis with some support from oxidative phosphorylation (OXPHOS) for the generation of ATP. The mtDNA set point provides the starting point from which cells increase their mtDNA copy number as they differentiate into mature functional cells. Dependent on cell types, mtDNA copy number ranges from ~10 copies in sperm to several thousand in cardiomyocytes. Consequently, differentiating cell types can acquire the appropriate numbers of mtDNA copy to meet their specific requirements for ATP generated through OXPHOS. However, as reprogrammed somatic cells do not always achieve this, it is essential to analyze them for their OXPHOS potential and ability to regulate mtDNA copy number. Here, we describe how to assess mtDNA copy number in pluripotent and differentiating cells using real-time PCR protocols; assess expression of the mtDNA specific replication factors through real-time RT-PCR; identify mtDNA variants in embryonic and induced pluripotent stem cells; determine DNA methylation patterns of the mtDNA-specific replication factors; and assess mitochondrial OXPHOS capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

    Article  CAS  PubMed  Google Scholar 

  2. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26(2 Pt 2):167–180, 10.1016/0092-8674(81)90300-7, [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Spikings EC, Alderson J, St John JC (2007) Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 76(2):327–335. doi:10.1095/biolreprod.106.054536, biolreprod.106.054536 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120(Pt 22):4025–4034. doi:10.1242/jcs.016972, jcs.016972 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Kelly RD, Mahmud A, McKenzie M, Trounce IA, St John JC (2012) Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40(20):10124–10138. doi:10.1093/nar/gks770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 16(5):488–509. doi:10.1093/humupd/dmq002, dmq002 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Dickinson A, Yeung KY, Donoghue J, Baker MJ, Kelly RD, McKenzie M, Johns TG, St John JC (2013) The regulation of mitochondrial DNA copy number in glioblastoma cells. Cell Death Differ 20(12):1644–1653. doi:10.1038/cdd.2013.115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5(2):140–158. doi:10.1007/s12015-009-9058-0

    Article  CAS  PubMed  Google Scholar 

  9. Kelly RD, Sumer H, McKenzie M, Facucho-Oliveira J, Trounce IA, Verma PJ, St John JC (2013) The effects of nuclear reprogramming on mitochondrial DNA replication. Stem Cell Rev 9(1):1–15. doi:10.1007/s12015-011-9318-7

    Article  CAS  PubMed  Google Scholar 

  10. Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17(12):586–592. doi:10.1016/j.tcb.2007.08.007, S0962-8924(07)00242-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. doi:10.1126/science.1210944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  CAS  PubMed  Google Scholar 

  13. Kelly RD, Rodda AE, Dickinson A, Mahmud A, Nefzger CM, Lee W, Forsythe JS, Polo JM, Trounce IA, McKenzie M, Nisbet DR, St John JC (2013) Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells 31(4):703–716. doi:10.1002/stem.1313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Victorian Government’s Operational Infrastructure Support Program, Monash Institute of Medical Research startup funds to J.C.St.J.; and an NHMRC CDA Fellowship and the James and Vera Lawson Trust to M.McK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. St. John .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, W., Kelly, R.D.W., Yeung, K.Y., Cagnone, G., McKenzie, M., John, J.C.S. (2015). Analysis of Mitochondrial DNA in Induced Pluripotent and Embryonic Stem Cells. In: Verma, P., Sumer, H. (eds) Cell Reprogramming. Methods in Molecular Biology, vol 1330. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2848-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2848-4_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2847-7

  • Online ISBN: 978-1-4939-2848-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics