Skip to main content

Turning Ideas into Modeling Problems

  • Chapter
  • First Online:
Modeling Students' Mathematical Modeling Competencies

Abstract

We show how the nucleus of an idea can be developed into modeling problems for secondary school using principles for problem design enunciated in Galbraith (2007). Once the germ has been developed for a task, the idea can be extended as necessary into related problems closer to the personal experience of the adolescents in secondary school. The issues and contexts secondary students choose to investigate, and the questions that they pose when given free reign or minimal constraints, are illustrated from an Australian modeling challenge. Finally, using these contexts as starting points, it is suggested such situations can be developed to engage students in important teaching issues involving necessary constituents of the modeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burkhardt, H. (2007). Functional mathematics and teaching modeling. In C. Haines, P. Galbraith, W. Blum, and S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 177–186). Chichester, UK: Horwood.

    Google Scholar 

  • Caron, F., and Bélair, J. (2007). Exploring university students’ competencies in modelling. In C. Haines, P. Galbraith, W. Blum, and S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 120–129). Chichester, UK: Horwood.

    Google Scholar 

  • Galbraith, P. (2007). Dreaming a ‘possible dream’: More windmills to conquer. In C. Haines, P. Galbraith, W. Blum, and S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 44–62). Chichester, UK: Horwood.

    Google Scholar 

  • Galbraith, P., and Stillman, G. (2001). Assumptions and context: Pursuing their role in modelling activity. In J. F. Matos, S. K. Houston, W. Blum, and S. P. Carreira (Eds.), Mathematical Modelling and Mathematics Education: Applications in Science and Technology (pp. 317–327). Chichester, UK: Horwood Publishing.

    Google Scholar 

  • Galbraith, P., and Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143–162.

    Article  Google Scholar 

  • Gravmeijer, K. (2007). Emergent modelling as aprecursor to mathematical modelling. In W. Blum, P. Galbraith, M. Niss, and H.-W. Henn (Eds.), Modelling and Applications in Mathematics Education: The 14th ICMI Study (New ICMI Studies Series) (Vol. 10, pp. 137–144). New York: Springer.

    Google Scholar 

  • Hickman, F. R. (1986). Mathematical modelling in physics. Physics Education, 21, 173–180.

    Article  Google Scholar 

  • Invasive Animals Competitive Research Centre. (2006). Science of Cane Toad Invasion and Control. Proceedings of the Invasive Animals CRC/CSIRO/Qld NRM & W Cane Toad Workshop, June 2006, Brisbane. Canberra: Author.

    Google Scholar 

  • Julie, C. (2002). Making relevance relevant in mathematics teacher education. Proceedings of the 2nd International Conference on the Teaching of Mathematics (at the undergraduate level). Hoboken, NJ: Wiley CD.

    Google Scholar 

  • Julie, C. (2007). Learners’ context preferences and mathematical literacy. In C. Haines, P. Galbraith, W. Blum, and S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 194–202). Chichester, UK: Horwood.

    Google Scholar 

  • Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, and S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 110–119). Chichester, UK: Horwood.

    Google Scholar 

  • Penrose, O. (1978). How can we teach mathematical modelling? Journal of Mathematical Modelling for Teachers, 1, 31.

    Google Scholar 

  • Spurlock, M. (Director). (2004). Supersize Me. [Film] New York: Kathbur Pictures.

    Google Scholar 

  • Wikipedia: http://en.wikipedia.org/wiki/Main_Page

  • Zbiek, R., and Connor, A. (2006). Beyond motivation: Exploring mathematical modeling as a context for deepening students’ understandings of curricular mathematics. Educational Studies in Mathematics, 63(1), 89 – 112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Galbraith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Galbraith, P.L., Stillman, G., Brown, J. (2010). Turning Ideas into Modeling Problems. In: Lesh, R., Galbraith, P., Haines, C., Hurford, A. (eds) Modeling Students' Mathematical Modeling Competencies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0561-1_11

Download citation

Publish with us

Policies and ethics