Skip to main content

The Discrete Reaction Field approach for calculating solvent effects

  • Chapter
  • First Online:
Book cover Solvation Effects on Molecules and Biomolecules

Abstract

We present here the discrete reaction field (DRF) approach, which is an accurate and efficient model for studying solvent effects on spectra, chemical reactions, solute properties, etc. The DRF approach uses a polarizable force field, which is (apart from the short-range repulsion) based entirely on second-order perturbation theory, and therefore ensures the correct analytical form of model potentials. The individual interaction components are modeled independently from each other, in a rigorous and straightforward way. The required force field parameters result as much as possible from quantum-chemical calculations and on monomer properties, thereby avoiding undesired fitting of these parameters to empirical data.

Because the physical description is correct and consistent, the method allows for arbitrary division of a system into different subsystems, which may be described either on the quantum-mechanical (QM) or the molecular mechanics (MM) level, without significant loss of accuracy. This allows for performing fully MM molecular simulations (Monte Carlo, molecular dynamics), which can subsequently be followed by performing QM/MM calculations on a selected number of representative snapshots from these simulations. These QM/MM calculations then give directly the solvent effects on emission or absorption spectra, molecular properties, organic reactions, etc

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballhausen, C., (1965) private communication.

    Google Scholar 

  2. Warshel, A. and Levitt M., Theoretical studies of enzymatic reactions: dielectric, electrostatic, and steric stabilization of the carbenium ion in the reaction of Lysozyme. J. Mol. Biol.: (1976) 103 227–249.

    CAS  Google Scholar 

  3. Thole, B.T. and Duijnen P.Th. van, On the quantum mechanical treatment of solvent effects. Theor. Chim. Acta: (1980) 55 307–318.

    CAS  Google Scholar 

  4. Singh, U.C. and Kollman P.A., A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH 3 Cl + Cl exchange reaction and gas phase protonation of polyethers. J. Comput. Chem.: (1986) 7 718–730.

    CAS  Google Scholar 

  5. Bash, P.A., Field M.J. and Karplus M., Free Energy Perturbation Method for Chemical Reactions in the Condensed Phase: A Dynamical Approach Based on a Combined Quantum and Molecular Mechanics Potential. J. Am .Chem.Soc.: (1987) 109 8092–8094.

    CAS  Google Scholar 

  6. Field, M.J., Bash P.A. and Karplus M., A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem.: (1990) 11 700–733.

    CAS  Google Scholar 

  7. Karelson, M.M. and Zerner M.C., Theoretical treatment of solvent effects on electronic spectroscopy. J.Phys.Chem.: (1992) 96 6949–6957.

    CAS  Google Scholar 

  8. Luzhkov, V. and Warshel A., Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies. J. Comput. Chem.: (1992) 13 199–213.

    CAS  Google Scholar 

  9. Tomasi, J. and Persico M., Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev.: (1994) 94 2027–2094.

    CAS  Google Scholar 

  10. Vries, A.H. de, Duijnen P.Th. van, Juffer A.H., Rullmann J.A.C., Dijkman J.P., Merenga H. and Thole B.T., Implementation of reaction field methods in quantum chemistry codes. J. Comput. Chem.: (1995) 16 37–55;1445–1446.

    Google Scholar 

  11. Jansen, G., Colonna F. and Ángyán J.G., Mixed Quantum-Classical Calculations on the Water Molecule in Liquid Phase: Influence of a Polarizable Environment on Electronic Properties. Int. J. Quantum Chem.: (1996) 58 251.

    CAS  Google Scholar 

  12. Gao, J., Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry. Accounts of Chemcal Research: (1996) 29 298–305.

    CAS  Google Scholar 

  13. Tuñón, I., Martins-Costa M. T. C, Millot C., Ruiz-López M. F. and Rivail J. L., A Coupled Density Functional-Molecular Mechanics Monte Carlo Simulation Method: The Water Molecule in Liquid Water. J.Comput.Chem.: (1996) 17 19–29.

    Google Scholar 

  14. Cramer, C.J. and Truhlar D.G., Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem. Rev.: (1999) 99 2161–2200.

    CAS  Google Scholar 

  15. Orozco, M. and Luque F.J., Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. Chem. Rev.: (2000) 100 4187–4225.

    CAS  Google Scholar 

  16. Poulsen, T.D., Ogilby P.R. and Mikkelsen K.V., Linear repsonse for solvated molecules MC/SCF/MM. J.Chem.Phys.: (2002) 116 3730–3738.

    CAS  Google Scholar 

  17. Tomasi, J., Thirty years of continuum solvation chemistry: a review, and prospects for the near future. Theor.Chem.Acc: (2004) 112 112–203.

    Google Scholar 

  18. Öhrn, A. and Karlström G., A theoretical study of the solvent shift to the n-p transition in formaldehyde with an effective discrete quantum chemical solvent model including non-electrostatic perturbation. Mol. Phys.: (2006) 104 3087–3099.

    Google Scholar 

  19. Barone, V., Cossi M. and Tomasi J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem.Phys.: (1997) 107 3210–3221.

    CAS  Google Scholar 

  20. Swart, M., Rösler E. and Bickelhaupt F.M., Proton Affinities in Water of Maingroup-Element Hydrides. Effects of Hydration and Methyl Substitution. Eur. J. Inorg. Chem.: (2007) 3646–3654.

    Google Scholar 

  21. Chen, F. and Chipman D.M., Boundary element methods for dielectric cavity construction and integration. J. Chem.Phys.: (2003) 119 10289–10297.

    CAS  Google Scholar 

  22. Mennucci, B. and Tomasi J., Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem.Phys.: (1997) 106 5151–5158.

    CAS  Google Scholar 

  23. Cossi, M., Rega N., Scalmani G. and Barone V., Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem.Phys.: (2001) 114 5691–5701.

    CAS  Google Scholar 

  24. Duijnen, P.Th. van, Vries A.H. de, Swart M. and Grozema F.C., Polarizabilities in the Condensed Phase and the Local Fields Problem. A Direct Reaction Field formulation. J.Chem.Phys.: (2002) 117 8442–8453.

    Google Scholar 

  25. Rullmann, J.A.C. and Duijnen P.Th. van, Analysis of discrete and continuum dielectric models; application to the calculation of protonation energies in solution. Mol. Phys.: (1987) 61 293–311.

    CAS  Google Scholar 

  26. Jensen, L., M.Swart and Duijnen P.Th. van, Microscopic and macroscopic polarization within a combined quantum mechanics and molecuar mechanics model. J. Chem.Phys.: (2005) 122 034103.

    CAS  Google Scholar 

  27. Chalasinski, G. and Szczesniak M.M., Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations. Chem. Rev.: (1994) 94 1723–1765.

    CAS  Google Scholar 

  28. Wesolowski, T. and Warshell A., Ab Initio Free Energy Perturbation Calculations of Solvation Free Energy Using the Frozen Density Functional Approach. J.Phys.Chem: (1994) 98 5183–5187.

    CAS  Google Scholar 

  29. Car, R. and Parinello M., Unified approach for molecular dynamics and density-functional theory. Phys.Rev.Lett.: (1985) 55 2471–2474.

    CAS  Google Scholar 

  30. Gao, J. and Thompson M.A., eds. Combined Quantum Mechanical and Molecular Mechanics Methods. Vol. 712. 1998, ACS: Washington, DC.

    Google Scholar 

  31. Jensen, L., Duijnen P.Th. van and Snijders J.G., A discrete solvent reaction field model for calculating molecular linear response properties in solution. J.Chem.Phys.: (2003) 119 12998–13006.

    CAS  Google Scholar 

  32. Jensen, L., Duijnen P.Th. van and Snijders J.G., A discrete reaction field model within density functional theory. J.Chem.Phys.: (2003) 118 514–521.

    CAS  Google Scholar 

  33. Batista, E.R., Xantheas S.S. and Jónsson H., Multipole moments of water molecules in clusters and ice Ih from first principles calculations. J. Chem.Phys.: (1999) 111 6011–6015.

    CAS  Google Scholar 

  34. DelleSite, L., Alevi A. and Lynden-Bell R.M., The electrostatic properties of water molecules in condensed phases: an ab initio study. Mol. Phys.: (1999) 96 1683–1693.

    Google Scholar 

  35. Jensen, L., Astrand P.-O., Osted O., Kongsted J. and Mikkelsen K.V., A dipole interaction model for the polarizability. J. Chem. Phys.: (2002) 116 4001–4010.

    CAS  Google Scholar 

  36. Engkvist, O., Åstrand P.-O. and Karlström G., Accurate Intermolecular Potentials Obtained from Molecular Wave Functions: Bridging the Gap between Quantum Chemistry and Molecular Simulations. Chem. Rev.: (2000) 100 4087–4108.

    CAS  Google Scholar 

  37. Tu, Y. and Laaksonen A., On the effect of Lennard-Jones parameters on the quantum mechanical and molecular mechanical coupling in a hybrid molecular dynamics simulation of liquid water. J. Chem.Phys.: (1999) 111 7519–7525.

    CAS  Google Scholar 

  38. Thole, B.T. and Duijnen P.Th. van, The direct reaction field hamiltonian: analysis of the dispersion term and application to the water dimer. Chem.Phys.: (1982) 71 211–220.

    CAS  Google Scholar 

  39. Brooks, B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S.J. and Karplus M., CHARMM: a program for macromolecular energy, minimization and dynamical calculations. J. Comput. Chem.: (1983) 4 187–217.

    CAS  Google Scholar 

  40. Rullmann, J.A.C. and Duijnen P.Th. van, A polarizable water model for calculation of hydration energies. Mol. Phys.: (1988) 63 451–475.

    CAS  Google Scholar 

  41. Rullmann, J.A.C., Bellido M.N. and Duijnen P.Th. van, The active site of Papain. All-atom study of interactions with protein matrix and solvent. J. Mol. Biol.: (1989) 206 101–118.

    CAS  Google Scholar 

  42. Ahlström, P., Wallqvist A., Engström S. and Jönsson B., A molecular dynamics study of polarizable water. Mol. Phys.: (1989) 68 563–581.

    Google Scholar 

  43. Kuwajima, S. and Warshel A., Incorporating Electric Polarizabilities in Water-Water Interaction Potentials. J.Phys. Chem.: (1990) 94 460–466.

    CAS  Google Scholar 

  44. Dang, L.X., Development of nonadditive intermolecular potentials using molecular-dynamics - solvation of Li+ and F- ions in polarizable water. J. Chem.Phys.: (1992) 96 6970–6977.

    CAS  Google Scholar 

  45. Soetens, J.-C. and Milot C., Effect of distributing multipoles and polarizabilities on molecular dynamics simulations of water. Chem. Phys. Lett.: (1995) 235 22–30.

    CAS  Google Scholar 

  46. Thomson, M.A. and Schenter G.K., Excited States of the Bacteriochlorophyll b Dimer of Rhodopseudomonas viridis: A QM/MM Study of the Photosynthetic Reaction Center That Includes MM Polarization. J. Phys. Chem.: (1995) 99 6374–386.

    Google Scholar 

  47. Day, P.N., Jensen J.H., Gordon M.S., Webb S.P., Stevens W. J., Krauss M., Garmer D., Bash H. and Cohen D., An effective fragment method for modeling solvent effects in quantum mechanical calculations. J. Chem.Phys.: (1996) 105 1968–1986.

    CAS  Google Scholar 

  48. Dang, L.X. and Chang T.-M., Molecular dynamics study of water clusters, liquid, and liquid–vapor interface of water with many-body potentials. J. Chem.Phys.: (1997) 106 8149–8159.

    CAS  Google Scholar 

  49. Gao, J., Energy components of aqueous solution: Insight from hybrid QM/MM simulations using a polarizable solvent model. J. Comput. Chem.: (1997) 18 1061–1071.

    CAS  Google Scholar 

  50. Burnham, C.J., Li J., Xantheas S. and Leslie M., The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2–21) and the phonon spectrum of ice Ih. J. Chem.Phys.: (1999) 110 4566–4581.

    CAS  Google Scholar 

  51. Halgren, T.A. and Damm W., Polarizable force fields. Curr. Opin. Struct. Biol.: (2001) 11 236–242.

    CAS  Google Scholar 

  52. Poulsen, T., Kongsted J., Osted A., Ogilby P.R. and Mikkelsen KV., The combined multiconfigurational self-consistent-field/molecular mechanics wave function approach. J. Chem.Phys.: (2001) 115 2393–2400.

    CAS  Google Scholar 

  53. Dupuis, M., Aida M., Kawahsima Y. and Hirao K., A polarizable mixed Hamiltonian model of electronic structure for micro-solvated excited states. I. Energy and gradients formulation and application to formaldehyde.. J.Chem.Phys.: (2002) 117 1242–1255.

    CAS  Google Scholar 

  54. Jorgensen, W.L., Chandraskhar J., Madura J.D., Impey R.W. and Klein M.L., Comparison of simple potential functions for simulating liquid water. J.Chem.Phys.: (1983) 79 926–935.

    CAS  Google Scholar 

  55. Rullmann, J.A.C. and Duijnen P.Th. van, Potential energy models of biological macromolecules: a case for ab initio quantum chemistry. CRC Reports in Molecular Theory: (1990) 1 1–21.

    CAS  Google Scholar 

  56. Kongsted, J., Osted A., Mikkelsen K.V. and Christiansen O., Molecular electric properties of liquid water calculated using the combined coupled cluster/molecular mechanics method. J. Mol.Struct. (THEOCHEM): (2003) 632 207–225.

    CAS  Google Scholar 

  57. Applequist, J., Carl J.R. and Fung J.K., Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J.Am.Chem.Soc.: (1972) 94 2947–2952.

    Google Scholar 

  58. Silberstein, L., Molecular refractivity and atomic interaction. II. Philos.Mag: (1917) 33 521–533.

    CAS  Google Scholar 

  59. Thole, B.T., Molecular polarisabilities calculated with a modified dipole interaction. Chem.Phys.: (1981) 59 341–350.

    CAS  Google Scholar 

  60. Duijnen, P.Th. van and Swart M., Molecular and atomic polarizabilities. J.Phys.Chem.A.: (1998) 102 2399–2407.

    Google Scholar 

  61. Mooij, W.T.M., Duijneveld F.B. van, Rijdt J.G.C.M. van Duijneveldt-van de and Eijck B.P. van, Transferable ab Initio Intermolecular Potentials. 1. Derivation from Methanol Dimer and Trimer Calculations. J. Phys. Chem. A: (1999) 103 9872–9882.

    Google Scholar 

  62. Kaminski, G. A., Stern H. A., Berne B. J., Friesner R. A., Cao Y. X., Murphy R. B., Zhou R. and Halgren T. A., Development of a Polarizable Force Field For Proteins via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests. J.Comput.Chem.: (2002) 23 1515–1531.

    CAS  Google Scholar 

  63. Ren, P. and Ponder J.W., Consistent Treatment of Inter- and Intramolecular Polarization in Molecular Mechanics Calculations. J. Comput. Chem.: (2002) 23 1497–1506.

    CAS  Google Scholar 

  64. Kaminski, G. A., Friesner R. A. and Zhou R., A Computationally Inexpensive Modification of the Point Dipole Electrostatic Polarization Model for Molecular Simulations. J.Comput.Chem.: (2003) 24 267–276.

    CAS  Google Scholar 

  65. Yu, H. and Gunsteren W.F. van, Accounting for polarization in molecular simulation. Comp. Phys. Comm.: (2005) 172 69–85.

    CAS  Google Scholar 

  66. Elking, D., Darden T. and Woods R.J., Gaussian Induced Dipole Polarization Model. J. Comput. Chem.: (2006) 28 1261–1274.

    Google Scholar 

  67. Møller, C. and Plesset M.S., Note on an Approximation Treatment for Many-Electron Systems. Phys.Rev.: (1934) 46 618–622.

    Google Scholar 

  68. Breneman, C.M. and Wiberg K.B., Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem.: (1990) 11 361–373.

    CAS  Google Scholar 

  69. Swart, M., Duijnen P.Th. van and Snijders J.G., A charge analysis derived from an atomic multipole expansion. J.Comput.Chem.: (2001) 22 79–88.

    CAS  Google Scholar 

  70. Bachrach, S. M., ed. Population Analysis and Electron Densities from Quantum Mechanics. Reviews of Computational Chemistry, ed. K.B. Lipkowitz and D.B. Boyd. Vol. 5. 1994, VCH: Weinheim. 171–227.

    Google Scholar 

  71. Grozema, F., Zijlstra R.W.J. and Duijnen P.Th. van, Many-body interactions calculated with the direct reaction field model. Chem.Phys.: (1999) 246 217–227.

    CAS  Google Scholar 

  72. Bukowski, R., Szalewicz K., Groenenboom G.C. and Avoird A.van der, Predictions of the Properties of Water from First Principles. Science: (2007) 315 1249–1252.

    CAS  Google Scholar 

  73. Axilrod, P. M. and Teller E., Interaction of the van der Waals Type Between Three Atoms. J. Chem. Phys.: (1943) 11 299–300.

    CAS  Google Scholar 

  74. Duijnen, P.Th. van and Vries A.H. de, The "direct reaction field" force field: a consistent way to connect and combine quantum-chemical and classical descriptions of molecules. Int. J. Quantum Chem.: (1996) 60 1111–1132.

    Google Scholar 

  75. Broer, R., Duijnen P.Th. van and Nieuwpoort W.C., Ab initio molecular orbital calculations on the active site of papain. Chem. Phys. Lett.: (1976) 42 525–529.

    CAS  Google Scholar 

  76. Thole, B.T., Duijnen P.Th. van and Hol W.G.J., On the role of the active site a-helix in papain. Biophys. Chem.: (1979) 9 273–280.

    Google Scholar 

  77. Duijnen, P.Th. van, Thole B.T., Broer R. and Nieuwpoort W.C., Active-site a-helix in papain and the stability of the ion-pair RS …ImH +. Int. J. Quantum Chem.: (1980) 17 651–671.

    Google Scholar 

  78. Thole, B.T. and Duijnen P.Th. van, Reaction field effects on proton transfer in the active site of Actinidin. Biophysical Chemistry: (1983) 18 53–59.

    CAS  Google Scholar 

  79. Duijnen, P.Th. van and Thole B.T., Environmental effects on proton transfer. Ab initio calculations on systems in a semi-classical, polarizable environment., in Quantum Theory of Chemical Reactions., R. Daudel, et al., Editors. 1982, D.Reidel Publishing Company: Dordrecht. p. 85–95.

    Google Scholar 

  80. Dijkman, J.P. and Duijnen P.Th. van, Papain in aqueous solution and the role of Asp-158 in the mechanism: an ab initio SCF+DRF+BEM study. International Journal of Quantum Chemistry, Quantum Biology Symposium: (1991) 18 49–59.

    CAS  Google Scholar 

  81. Coutinho, K., Oliveira M.J.D. and Canuto S., Sampling configurations in Monte Carlo simulations for quantum mechanical studies of solvent effects. Int. J. Quantum Chem.: (1998) 66 249–253.

    CAS  Google Scholar 

  82. Coutinho, K. and Canuto S., The sequential Monte Carlo-quantum mechanics methodology. Application to the solvent effects in the Stokes shift of acetone in water. J. Mol.Struct. (THEOCHEM): (2003) 632 235–246.

    CAS  Google Scholar 

  83. Dupuis, M., Farazdel A., Karma S.P. and Maluendes S.A., HONDO: a general atomic and molecular electronic structure system, in MOTECC-90, E. Clementi, Editor. 1990, ESCOM: Leiden. p. 277–342.

    Google Scholar 

  84. Zerner, M.C., ZINDO, A General Semi-empirical Program Package. 1990, Quantum Theory Project, University of Florida: Gainesville (Fl.) USA.

    Google Scholar 

  85. Guest, M.F., Lenthe J.H. van, Kendrick J. and Sherwood P., GAMESS(UK). 1999, Daresbury Laboratory: Cheshire England.

    Google Scholar 

  86. Baerends, E.J., Autschbach J., Bérces A., Bickelhaupt F.M., Bo C., Boerrigter P.M., Cavallo L., Chong D.P., L. Deng, Dickson R.M., Duijnen P.Th. van, Ellis D.E., Faassen M. van, L. Fan T.H. Fischer, Guerra C. Fonseca, Gisbergen S.J.A. van, Groeneveld J.A., Gritsenko O.V., Grüning M., Harris F.E., Hoek P. van den, Jacob C.R., Jacobsen H., Jensen L., Kessel G. van, Kootstra F., Lenthe E. van, McCormack D.A., Michalak A., Neugebauer J., Nicu V.P., Osinga V.P., Patchkovskii S., Philipsen P.H.T., Post D., Pye C.C., Ravenek W., Ros P., Schipper P.R.T., Schreckenbach G., Snijders J.G., Solà M., Swart M., Swerhone D., Velde G. te, Vernooijs P., Versluis L., Visscher L., Visser O., Wang F., Wesolowski T.A., Wezenbeek E.M. van, Wiesenekker G., Wolff S.K., Woo T.K., Yakovlev A.L. and Ziegler T., Amsterdam Density Functional Theory. 2007, SCM: Amsterdam.

    Google Scholar 

  87. Swart, M. and Duijnen P.Th. van, DRF90: a Polarizable Force Field. Mol. Simul.: (2006) 32 471–484.

    CAS  Google Scholar 

  88. McWeeny, R., Methods of Molecular Quantum Mechanics. 1989, London: Academic Press.

    Google Scholar 

  89. Mehler, E.L., Self-consistent, nonorthogonal group function approximation for polyatomic systems. I. Closed shells. J.Chem.Phys.: (1977) 67 2728–2739.

    CAS  Google Scholar 

  90. Mehler, E.L., Self-consistent, nonorthogonal group function approximation for polyatomic systems. II. Analysis of noncovalent interactions. J.Chem.Phys.: (1981) 74 6298–6306.

    CAS  Google Scholar 

  91. Mehler, E.L., Self-consistent, nonorthogonal group function approximation: An ab initio approach for modelling interacting fragments and environmental effects. J. Mathematical Chemistry: (1992) 10 57–91.

    CAS  Google Scholar 

  92. Stone, A. J., The Theory of Intermolecular forces. 1996, Oxford: Clarendon.

    Google Scholar 

  93. Kutzelnigg, W., Stationary perturbation theory. Theor. Chim. Acta: (1992) 83 263–312.

    Google Scholar 

  94. Buckingham, A.D., Basic theory of intermolecular forces: applications to small molecules, in Intermolecular Interactions: From Diatomics to Biopolymers, B. Pullman, Editor. 1978, John Wiley & Sons: Chichester. p. 1–67.

    Google Scholar 

  95. Avoird, A. van der, Wormer P.E.S., Mulder F. and Berns R.M., Ab initio studies of the interactions in van der Waals molecules, in Topics in Current Chemistry, F.L. Boschke, Editor. 1980, Springer Verlag: Berlin. p. 1–51.

    Google Scholar 

  96. Margenau, M. and Kestner N. R., Theory of Intermolecular forces. 1969, Oxford: Pergamon.

    Google Scholar 

  97. Unsöld, A., Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoßungskräfte. Z.Phys.: (1927) 43 563–574.

    Google Scholar 

  98. London, F., Theory and systematics of molecular forces. Z.Phys.: (1930) 63 245–279.

    CAS  Google Scholar 

  99. Casimir, H.B.G. and Polder D., The Influence of Retardation on the London-van der Waals Forces. Phys. Rev.: (1948) 73 360–372.

    CAS  Google Scholar 

  100. Claverie, P., Elaboration of approximate formulas for the interaction between large molecules: application in organic chemistry, in Intermolecular Interactions: From Diatomics to Biopolymers, B. Pullman, Editor. 1978, John Wiley & Sons: Chichester. p. 69–305.

    Google Scholar 

  101. Boys, S.F. and Bernardi F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys.: (1970) 19 553–566.

    CAS  Google Scholar 

  102. Duijneveldt, F.B. van, Rijdt J.G.C.M. van Duijneveldt-van de and Lenthe J.H. van, State of the art in counterpoise theory. Chem. Rev.: (1994) 94 1873–1885.

    Google Scholar 

  103. Thole, B.T. and Duijnen P.Th. van, A general population analysis preserving the dipole moment. Theor. Chim. Acta: (1983) 63 209–221.

    CAS  Google Scholar 

  104. Mulliken, R.S., Electronic population analysis on LCAO–MO molecular wave functions II. Overlap populations, bond orders, and covalent bond energies. J.Chem.Phys.: (1955) 23 1841–1846.

    CAS  Google Scholar 

  105. Jensen, F., Introduction to Computational Chemistry. 1999, Chichester, UK: Wiley.

    Google Scholar 

  106. Wiberg, K.B. and Rablen P.R., Comparison of atomic charges derived via different procedures. J.Comput.Chem.: (1993) 14 1504–1518.

    CAS  Google Scholar 

  107. Sigfridsson, E. and Ryde U., Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J.Comput.Chem.: (1998) 19 377–395.

    CAS  Google Scholar 

  108. Jensen, L., Swart M., Duijnen P.Th. van and Snijders J.G., Medium perturbations on the molecular polarizability calculated with a localized dipole interaction model. J.Chem.Phys.: (2002) 117 3316–3320.

    CAS  Google Scholar 

  109. Augspurger, J.D. and Dykstra C.E., Evolution of polarizabilities and hyperpolarizabilities with molecular aggregation: A model study of acetylene clusters. Int.J. Quantum Chem.: (1992) 43 135–146.

    CAS  Google Scholar 

  110. Duijnen, P.Th. van, Swart M. and Grozema F., QM/MM calculation of (hyper)polarizabilities with the DRF approach., in Hybrid Quantum Mechanical and Molecular Mechanics Methods, J.Gao and M.A. Thompson, Editors. 1999, ACS Books: Washington, DC. p. 220–232.

    Google Scholar 

  111. Kirtman, B., Dykstra C.E. and Champagne B., Major intermolecular effects on nonlinear electrical response in a hexatriene model of solid state polyacetylene. Chem.Phys.Lett.: (1999) 305 132–138.

    CAS  Google Scholar 

  112. Fraga, S., Saxena K.M.S. and Karwowski J., Handbook of Atomic Data. Physical Sciences Data 5. 1976, Amsterdam: Elsevier.

    Google Scholar 

  113. Böttcher, C.J.F. and Bordewijk P., Theory of electric polarization. 2nd ed. Vol. II. 1978, Amsterdam: Elsevier.

    Google Scholar 

  114. Sadlej, A.J., Medium-size polarized basis-sets for high-level-correlated calculations of molecular electric properties. 4. Third row atoms - Ge through Br. Theor. Chim. Acta: (1991) 81 45–63.

    CAS  Google Scholar 

  115. Sadlej, A.J., Medium-size polarized basis-sets for high-level-correlated calculations of molecular electric properties. 5. Fourth row atoms - Sn through I. Theor. Chim. Acta: (1991) 81 339–354.

    Google Scholar 

  116. Werner, H-H. and W.Meyer, Static dipole polarizabilities of small molecules. Mol. Phys.: (1976) 31 855–872.

    CAS  Google Scholar 

  117. Gisbergen, S.J.A. van, Osinga V.P., Gritsenko O.V., Leeuwen R. van, Snijders J.G. and Baerends E.J., Improved density functional theory results for frequency-dependent polarizabilities, by the use of an exchange-correlation potential with correct asymptotic behavior. J.Chem.Phys.: (1996) 105 3142–3161.

    Google Scholar 

  118. Champagne, B., Perpète E.A., Gisbergen S.J. A. van, Baerends E.J., Snijders J.G., Soubra-Ghaoui C., Robins K.A. and Kirtman B., Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains. J.Chem.Phys.: (1998) 109 0489–10498.

    Google Scholar 

  119. Gisbergen, S.J.A. van, Schipper P.R.T., Gritsenko O.V., Baerends E.J., Snijders J.G., Champagne B. and Kirtman B., Electric Field Dependence of the Exchange-Correlation Potential in Molecular Chains. Phys. Rev. Lett.: (1999) 83 694–697.

    Google Scholar 

  120. Gritsenko, O. and Baerends E.Jan., Asymptotic correction of the exchange – correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J.Chem.Phys.: (2004) 121 655–660.

    CAS  Google Scholar 

  121. Neugebauer, J., Gritsenko O. and Baerends E.J., Assessment of a simple correction for the long-range charge-transfer problem in time-dependent density-functional theory. J.Chem.Phys.: (2006) 124 214102.

    Google Scholar 

  122. Paricaud, P., Predota M., Chialvo A.A. and Cummings P.T., From dimer to condensed phases at extreme conditions: Accurate predictions of the properties of water by a Gaussian charge polarizable model. J. Chem. Phys.: (2005) 122 244511.

    Google Scholar 

  123. Jackson, J.D., Classical Electrodynamics. 1975, New York: John Wiley & Sons.

    Google Scholar 

  124. Juffer, A.H., Botta E.F.F., Keulen B.A.M. van, Ploeg A. van der and Berendsen H.J.C., The electric potential of a macromolecule in a solvent: a fundamental approach. J.Comput.Phys.: (1991) 97 144–171.

    CAS  Google Scholar 

  125. Eichinger, M., Tavan P., Hutter J. and Parrinello M., A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields. J. Chem. Phys.: (1999) 110 10452–10467.

    CAS  Google Scholar 

  126. Takahashi, H., Hori T., Hashimoto H. and Nitta T., A hybrid QM/MM method employing real space grids for QM water in the TIP4P water solvents. J.Comput.Chem.: (2001) 22 1252–1261.

    CAS  Google Scholar 

  127. Müller, W., Flesch J. and Meyer W., Treatment of intershell correlation effects in ab intio calculations by use of core potentals. Method and application to alkali and earth atoms. J. Chem. Phys.: (1984) 80 3297–3310.

    Google Scholar 

  128. Frecer, V. and Miertus S., Polarizable continuum model of solvation for biopolymers. Int. J.Quant. Chem.: (1992) 42 1449–1468.

    CAS  Google Scholar 

  129. Willetts, A., Rice J.E., Burland D.M. and Shelton D.P., Problems in the comparison of theoretical and experimental hyperpolarizabilities. J. Chem Phys.: (1992) 97 7590–7599.

    CAS  Google Scholar 

  130. Shelton, D.P. and Rice J.E., Measurements and Calculations of the Hyperpolarkabilities of Atoms and Small Molecules in the Gas Phase. Chem. Rev.: (1994) 94 3–29.

    CAS  Google Scholar 

  131. Wortmann, R. and Bishop D.M., Effective polarizabilities and local field corrections for nonlinear optical experiments in condensed media. J.Chem.Phys.: (1998) 108 1001–1007.

    CAS  Google Scholar 

  132. Lorentz, H.A., The Theory of Electrons. 1st. ed. 1909, Leizig: B.G. Teubner.

    Google Scholar 

  133. Boyd, R.W., Nonlinear Optics. 1992, San Diego: Academic Press.

    Google Scholar 

  134. Prasad, P.N. and Williams D.J., Introduction to Nonlinear Optical Effeects in Molecules and Polymers. 1991, New York: Wiley.

    Google Scholar 

  135. Butcher, P..N and Cotter D, The Elements of Nonlinear Optics. 1st ed. 1990, Cambridge: Cambridge University Press.

    Google Scholar 

  136. Jensen, L. and Duijnen P. Th. van, The Discrete Solvent Reaction Field model: A Quantum mechanics/Molecular mechanics model for calculating nonlinear optical properties of molecules in the condensed phase., in Atoms, molecules and clusters in electric fields. Theoretical approaches to the calculation of electric polarizability, G. Maroulis, Editor. 2006, Imperial College Press: London. p. 1–43.

    Google Scholar 

  137. Duijnen, P.Th. van and Rullmann J.A.C., Intermolecular interactions with the direct reaction field method. Int. J. Quantum Chem.: (1990) 38 181–189.

    Google Scholar 

  138. Dunning, T.H. and Hay P.J., Gaussian basis sets for molecular calculations, in Methods in Electronic Structure Theory, H.F. Schaefer III, Editor. 1977, Plenum: New York. p. 1–27.

    Google Scholar 

  139. Soper, A.K., The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys.: (2000) 258 121–137.

    CAS  Google Scholar 

  140. Neusser, H.J. and Krause H., Binding Energy and Structure of van der Waals Complexes of Benzene. Chem. Rev.: (1994) 94 1829–1843.

    CAS  Google Scholar 

  141. Sinnokrot, M.O. and Sherrill C.D., Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations. J. Phys. Chem. A: (2004) 108 10200–10207.

    CAS  Google Scholar 

  142. Swart, M., Wijs T. van der, Guerra C.Fonseca and Bickelhaupt F. M., π-π stacking tackled with density functional theory. J. Molec. Model.: (2007) in press.

    Google Scholar 

  143. Battaglia, M.R., Buckingham A.D. and Williams J.H., The electric quadrupole moments of benzene and hexafluorobenzene. Chem. Phys. Lett.: (1981) 78 421–423.

    CAS  Google Scholar 

  144. Arunan, E. and Gutowsky H.S., The rotational spectrum, structure and dynamics of a benzene dimer. J.Chem.Phys.: (1993) 98 4294–4296.

    CAS  Google Scholar 

  145. Kolos, W. and Roothaan C.C J., Accurate Electronic Wave Functions for the H2 Molecule. Rev. Mod. Phys.: (1960) 32, 219–232.

    CAS  Google Scholar 

  146. Chalasinski, G., Szczesniak M.M., Cieplak P. and Scheiner S., Ab initio study of intermolecular potential of Hz0 trimer. J. Chem. Phys.: (1991) 94 2873–2882.

    CAS  Google Scholar 

  147. Dunning, T.H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neoen and hydrogen. (1989) 90 1007–1023.

    CAS  Google Scholar 

  148. Schuddeboom, W., Jonker S.A., Warman J.M., Haas M.P. de, Vermeulen M.J.W., Jager W.F., Lange B. de, Feringa B.L. and Fessendens R.W., Sudden Polarization in the Twisted, Phantom State of Tetraphenylethylene Detected by Time-Resolved Microwave Conductivity. J. Am. Chem. SOC: (1993) 115 3286–3290.

    CAS  Google Scholar 

  149. Schilling, C.L. and Hilinski* E.F., Dependence of the Lifetime of the Twisted Excited Singlet State of Tetraphenylethylene on Solvent Polarity. J. Am .Chem.SOc.: (1988) 110 2296–2298.

    CAS  Google Scholar 

  150. Ma, J. and Zimmt M.B., Equilibration between the fluorescent and zwitterionic phantom states in alkyl-substituted tetraphenylethylenes. J. Am .Chem.SOc.: (1992) 114 9723–9724.

    CAS  Google Scholar 

  151. Zijlstra, R. W.J., Grozema F. C., Swart M., Feringa B. L. and Duijnen P. Th. van, Solvent Induced Charge Separation in the Excited States of Symmetrical Ethylene: A Direct Reaction Field Study. J.Phys.Chem.A: (2001) 105 3583–3590.

    CAS  Google Scholar 

  152. Zijlstra, R.W.J., Duijnen P.Th. van, Feringa B.L., Steffen T., Duppen K. and Wiersma D.A., Excited state dynamics of tetraphenylethene: ultrafast Stoke shift, isomerization and charge separation. J.Phys.Chem.A: (1997) 101 9828–9836.

    CAS  Google Scholar 

  153. Grozema, F.C., M.Swart, Zijlstra R.J.W., Piet J.J., Siebbeles L.D.A. and Duijnen P. Th. van, QM/MM study of the role of the solvent in the formation of the charge separated excited state in 9,9'-bianthryl. J. Am .Chem.SOc.: (2005) 127 11019–11028.

    CAS  Google Scholar 

  154. Vries, A.H. de and Duijnen P.Th. van, Solvatochroism of the π*¨n transition of acetone by combined quantum mechanical–classical mechanical calculations. Int. J. Quantum Chem.: (1996) 57 1067–1076.

    Google Scholar 

  155. Duijnen, P.Th. van and Netzel T.L., Explicit Solvent DRF INDOs/CIS Computations of Charge Transfer State Energetics in a Pyrenyldeoxyuridine Nucleoside Model. J.Phys. Chem. A: (2006) 110 2204–2213.

    Google Scholar 

  156. Mitchell, C.D. and Netzel T.L., CIS INDO/S SCRF study of electron transfer excige states in a 1-pyrenyl substituted 1-methyluracil-5-carboxamide nucleoside: dielctric continuum solvation effects on electron transger states. J.Phys.Chem. B: (2000) 104 125–136.

    CAS  Google Scholar 

  157. Duijnen, P.Th. van, ZINDO/DRF, in ZINDO, A General Semi-empirical Program Package, M.C. Zerner, Editor. 1998, Quantum Theory Project, University of Florida: Gainesville (Fl.) USA. p. unpublished.

    Google Scholar 

  158. Duijnen, P.Th. van, ZINDO/DRF_RUMER_CI, in ZINDO, A General Semi-empirical Program Package, M.C. Zerner, Editor. 2003, Quantum Theory Project, University of Florida: GainesGainesville (Fl.) USAville. p. unpublished.

    Google Scholar 

  159. Manne, R. and Zerner M.C., Matrix elements of spin-dependent one-electron operators between bonded functions. Int. J. Quantum Chem.Quantum Chemistry Symposium: (1986) 19 165–172.

    Google Scholar 

  160. Duijnen, P.Th. van, Greene S.N. and Richards N.G.J., Time dependent density functional theory/discrete reaction field spectra of open-shell systems: the visual spectrum of [Fe III (PyPepS) 2 ] in aqueous solution. J.Chem.Phys.: (2007) 127 045105.

    Google Scholar 

  161. Hirata, S. and Head-Gordon M., Time-dependent density functional theory within the Tamm– Dancoff approximation. Chem.Phys.Lett.: (1999) 314 291–299.

    CAS  Google Scholar 

  162. Rinkevicius, Z., Tunell I., Salek P., Vahtras O. and Ågren H., Restricted DFT theory of linear time-depnendent properties in open- shell molecules. J. Chem. Phys.: (2003) 119 34–46.

    CAS  Google Scholar 

  163. Wang, F. and Ziegler T., Excitation energies of some d1 systems calculated using time-dependent density functional theory: an implementation of open-shell TDDFT theory for doublet–doublet excitations. Mol.Phys: (2004) 102 2585 – 2595.

    CAS  Google Scholar 

  164. Jensen, L., M.Swart, Duijnen P.Th. van and Autschbach J., The circular dichroism spectrum of [Co(en)3] 3+ in water. Int. J. Quantum Chem.: (2006) 106 2479–2488.

    CAS  Google Scholar 

  165. Cammi, R., Cossi M. and Tomasi J., Analytical derivatives for molecular solutes. III. Hartree – Fock static polarizability and hyperpolarizabilities in the polarizable continuum model. J. Chem Phys.: (1996) 104 4611–4620.

    CAS  Google Scholar 

  166. Luo, Y., Norman P. and Ågren H., A semiclassical approximation model for properties of molecules in solution. J. Chem. Phys.: (1998) 109 3589–3595.

    CAS  Google Scholar 

  167. Dehu, C., Geskin V., Persoons A. and Brédas J.-L., Effect of medium polarity on the secnd order polarizabiity of an ocupolar chromophore: an ab initio reation field study.. Eur. J. Org. Chem.: (1998) 1267–1269.

    Google Scholar 

  168. Morita, A. and Kato S., An ab initio analysis of medium perturbation on molecular polarizabilities. J.Chem.Phys.: (1999) 110 11987–11998.

    CAS  Google Scholar 

  169. Jensen, L. and Duijnen P.Th. van, The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: A quantum mechanical/molecular mechanics study. J. Chem. Phys.: (2005) 213 074307.

    Google Scholar 

  170. Mikkelsen, K.V., Luo Y., H.Ågren and Jørgensen P., Sign change of hyerpolarizablities of solvated water. J. Chem Phys.: (1995) 102 9362–9367.

    CAS  Google Scholar 

  171. Kaatz, P. and Shelton D.P., Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores. J. Am .Chem.SOc.: (1996) 105 3918–3929.

    CAS  Google Scholar 

  172. Shoji, I., Kondo T. A. and Ito R., Second-order nonlinear susceptibilities of various dielectric and semiconductor materials. Opt.Quantum Electr.: (2002) 34 797–833.

    CAS  Google Scholar 

  173. Stähelin, M., Burland D.M. and Rice J.E., Solvent dependence of the second order hyperpolarizability in p-nitroaniline. Chem. Phys. Lett.: (1992) 191 245–250.

    Google Scholar 

  174. Connolly, M.L., Solvent-accessible surface of proteins and nucleic acids. Science: (1983) 221 709–713.

    CAS  Google Scholar 

  175. Pierotti, R.A., A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev.: (1976) 76 717–726.

    CAS  Google Scholar 

  176. Winstein, S. and Fainberg A.H., Correlation of Solvolysis Rates. 1 V.l Solvent Effects on Enthalpy and Entropy of Activation for Solvolysis of &Butyl Chloride2. J. Am .Chem.Soc.: (1957) 79 5937–5950.

    CAS  Google Scholar 

  177. Winstein, S., Clippinger E., Fainberg A.H. and Robinson G.C., Salt effexts of ion-pairs in solvolysis. J.Am.Chem.Soc.: (1954) 76 2597.

    CAS  Google Scholar 

  178. Remko, M., Duijnen P.Th. van and Lieth C-W. von der, Structure and stability of Li (I) and Na(I) - carboxylate, sulfate and phosphate complexes. J.Mol.Struct. (THEOCHEM): (2007) 814 119–125.

    CAS  Google Scholar 

  179. Remko, M., Duijnen P.Th. van and Swart M., Theoretical study of molecular structure, tautomerism, and geometrical isomerism of N-methyl and N-phenyl substituted cyclic imidazolines, oxazolines and thiazolines. Struct.Chem.: (2003) 14 271–278.

    CAS  Google Scholar 

  180. Calvert, J. G. and Pitts J. N., Photochemistry. 1966, New York: Wiley. 377.

    Google Scholar 

  181. Hayes, W.P. and Timmons C.J., Solvent and substituent effects on the nÆπ* absorption bands of some ketones. Spectrochim. Acta: (1965) 21 529–541.

    CAS  Google Scholar 

  182. Bayliss, N.S. and Wills-Johnson G., Solvent effects on the intensities and weak ultraviolet spectra of ketones and nitroparaffins - I. Spectrochim. Acta: (1968) 24A 551–661.

    Google Scholar 

  183. Kajzar, F. and J.Messier, Third-harmonic generation in liquids. Phys. Rev. A: (1985) 32 2352–2363.

    CAS  Google Scholar 

  184. Levine, B. F. and Bethea C. G., Effects on hyperpolarizabilities of molecular interactions in associating liquid mixtures. J. Chem. Phys.: (1976.) 65 2429–2438.

    CAS  Google Scholar 

  185. Thormahlen, I., Straub J. and Grigul. U., Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density. J. Phys. Chem. Ref. Data: (1985) 14 933–945.

    Google Scholar 

  186. Teng, C.C. and Garito A.F., Dispersion of the nonlinear second-order optical susceptibility of organic systems. Phys. Rev. B: (1983) 28 6766–6773.

    CAS  Google Scholar 

  187. Grozema, F.C. and Duijnen P.Th. van, Solvent effects on the π*♦n transition in various solvents. J.Phys.Chem.A: (1998) 102 7984–7989.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Th. Van Duijnen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Duijnen, P.T., Swart, M., Jensen, L. (2008). The Discrete Reaction Field approach for calculating solvent effects. In: Canuto, S. (eds) Solvation Effects on Molecules and Biomolecules. Challenges and Advances in Computational Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8270-2_3

Download citation

Publish with us

Policies and ethics