Skip to main content

Microwave-Assisted Synthesis: General Concepts

  • Chapter
  • First Online:
Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

Microwave heating is proving to be a valuable technique in preparative chemistry. Using a modern scientific microwave apparatus it is possible to access elevated temperatures in an easy, safe and reproducible way. By using microwave heating, reaction times can often be decreased, product yields increased and purity enhanced as compared with conventional heating methods. The origins of the rate enhancements observed have been a topic of considerable debate over the years. It is now accepted, however, that microwave heating is just that – heating. As well as giving an overview of the physical chemistry concepts behind microwave heating, this chapter explores the key tenets of microwave-assisted organic chemistry in the context of particular classes of reaction. The chapter discusses topics such as metal catalysis, cycloaddition and condensation reactions, use of gases as reagents, combinatorial chemistry and reaction scale-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GHz:

Gigahertz

MW:

Microwave

ppb:

Parts per billion

ppm:

Parts per million

UV:

Ultraviolet

References

  1. de la Hoz A, Loupy A (eds) (2012) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Kappe CO, Stadler A, Dallinger D (2012) Microwaves in organic and medicinal chemistry, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Leadbeater NE (ed) (2010) Microwave heating as a tool for sustainable chemistry. CRC, Boca Raton

    Google Scholar 

  4. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374

    Article  CAS  Google Scholar 

  5. Powell GL (2010) Microwave heating as a tool for inorganic and organometallic synthesis. In: Leadbeater NE (ed) Microwave heating as a tool for sustainable chemistry. CRC, Boca Raton

    Google Scholar 

  6. Vanier GS (2010) Microwave heating as a tool for the biosciences in microwave heating. In: Leadbeater NE (ed) Microwave heating as a tool for sustainable chemistry. CRC, Boca Raton

    Google Scholar 

  7. Sandoval WN, Pham VC, Lill JR (2008) Recent developments in microwave-assisted protein chemistries – can this be integrated into the drug discovery and validation process? Drug Discov Today 13(23–24):1075–1081

    Article  CAS  Google Scholar 

  8. Bogdal D, Prociak A (2007) Microwave-enhanced polymer chemistry and technology. Blackwell, Oxford

    Book  Google Scholar 

  9. Ebner C, Bodner T, Stelzer F, Wiesbrock F (2011) One decade of microwave-assisted polymerizations: Quo vadis? Macromol Rapid Commun 32:254–288

    Article  CAS  Google Scholar 

  10. Iannelli M (2010) Microwave heating as a tool for sustainable polymer chemistry. In: Leadbeater NE (ed) Microwave heating as a tool for sustainable chemistry. CRC, Boca Raton

    Google Scholar 

  11. Sosnik A, Gotelli G, Abraham GA (2011) Prog Polym Sci 36:1050–1078

    Article  CAS  Google Scholar 

  12. Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Comm 28:368–386

    Article  CAS  Google Scholar 

  13. Galbrecht F, Bünnagel TW, Scherf U, Farrell T (2007) Microwave-assisted preparation of semiconducting polymers. Macromol Rapid Comm 28:387–394

    Article  CAS  Google Scholar 

  14. Horikoshi S, Serpone N (2012) Microwave frequency effects in organic synthesis. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  15. Saillard R, Poux M, Berlan J, Audhuy-Peaudecerf M (1995) Microwave heating of organic solvents: thermal effects and field modelling. Tetrahedron 51:4033–4042

    Article  CAS  Google Scholar 

  16. Lienhard JH IV, Lienhard JHV (2008) A heat transfer textbook, 3rd edn. Phlogiston, Cambridge

    Google Scholar 

  17. Washington AL, Strouse GF (2009) Selective microwave absorption by trioctyl phosphine selenide: does it play a role in producing multiple sized quantum dots in a single reaction? Chem Mat 21:2770–2776

    Article  CAS  Google Scholar 

  18. Washington AL, Strouse GF (2008) Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. J Am Chem Soc 130:8916–8922

    Article  CAS  Google Scholar 

  19. Perreux L, Loupy A (2012) Nonthermal effects of microwaves in organic synthesis. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  20. de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178

    Article  Google Scholar 

  21. Russo F, Odell LR, Olofsson K, Nilsson P, Larhed M (2012) Microwave-heated transition metal-catalyzed coupling reactions. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  22. Mehta VP, Van der Eycken E (2011) Microwave-assisted C–C bond forming cross-coupling reactions: an overview. Chem Soc Rev 40:4925–4936

    Article  CAS  Google Scholar 

  23. Singh BK, Kaval N, Tomar S, Van der Eycken E, Parmar VS (2008) Transition metal-catalyzed carbon–carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org Process Res Dev 12:468–474

    Article  CAS  Google Scholar 

  24. Arvela RK, Leadbeater NE, Sangi MS, Williams VA, Granados P, Singer RD (2005) A reassessment of the transition-metal free Suzuki-type coupling methodology. J Org Chem 70:161–168

    Article  CAS  Google Scholar 

  25. Arvela RK, Leadbeater NE (2005) Microwave-promoted Heck coupling using ultralow metal catalyst concentrations. J Org Chem 70:1786–1790

    Article  CAS  Google Scholar 

  26. Melucci M, Barbarella G, Sotgiu G (2002) Solvent-free, microwave-assisted synthesis of thiophene oligomers via suzuki coupling. J Org Chem 67:8877–8884

    Article  CAS  Google Scholar 

  27. Melucci M, Barbarella G, Zambianchi M, Di Pietro P, Bongini A (2004) Solution-phase microwave-assisted synthesis of unsubstituted and modified alpha-quinque- and sexithiophenes. J Org Chem 69:4821–4828

    Article  CAS  Google Scholar 

  28. Cravotto G, Cintas P (2012) The combined use of microwaves and ultrasound: methods and practice. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  29. Di Maria F, Olivelli P, Gazzano M, Zanelli A, Biasiucci M, Gigli G, Gentili D, D'Angelo P, Cavallini M, Barbarella G (2011) A successful chemical strategy to induce oligothiophene self-assembly into fibers with tunable shape and function. J Am Chem Soc 133:8654–8661

    Article  CAS  Google Scholar 

  30. Stockland RA (2010) Microwave heating as a tool for organic synthesis. In: Leadbeater NE (ed) Microwave heating as a tool for sustainable chemistry. CRC, Boca Raton

    Google Scholar 

  31. Luque R, Balu AM, Macquarrie DJ (2012) Microwave-assisted heterogeneously catalyzed processes. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  32. Irfan M, Fuchs M, Glasnov TN, Kappe CO (2009) Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating. Chem Eur J 15:11608–11618

    Article  CAS  Google Scholar 

  33. Bag S, Dasgupta S, Török B (2011) Microwave-assisted heterogeneous catalysis: an environmentally benign tool for contemporary organic synthesis. Curr Org Synth 8:237–261

    Article  CAS  Google Scholar 

  34. Desai B, Kappe CO (2004) Microwave-assisted synthesis involving immobilized catalysts. Top Curr Chem 242:177–208

    Article  CAS  Google Scholar 

  35. Coquerel Y, Rodriguez J (2008) Microwave‐assisted olefin metathesis. Eur J Org Chem 1125–1132

    Google Scholar 

  36. Grigg R, Martin W, Morris J, Sridharan V (2003) Synthesis of Δ3-pyrrolines and Δ3-tetrahydropyridines via microwave-accelerated ring-closing metathesis. Tetrahedron Lett 44:4899–4901

    Article  CAS  Google Scholar 

  37. Thanh GV, Loupy A (2003) Microwave-assisted ruthenium-catalyzed olefin metathesis under solvent-free conditions. Tetrahedron Lett 44:9091–9094

    Article  CAS  Google Scholar 

  38. Mayo KG, Nearhoof EH, Kiddle JJ (2002) Microwave-accelerated ruthenium-catalyzed olefin metathesis. Org Lett 4:1567–1570

    Article  CAS  Google Scholar 

  39. Garbacia S, Desai B, Lavastre O, Kappe CO (2003) Microwave-assisted ring-closing metathesis revisited. on the question of the nonthermal microwave effect. J Org Chem 68:9136–9139

    Article  CAS  Google Scholar 

  40. Debleds O, Campagne JM (2008) 1,5-Enyne metathesis. J Am Chem Soc 130:1562–1563

    Article  CAS  Google Scholar 

  41. Comer E, Rohan E, Deng L, Porco JA (2007) An approach to skeletal diversity using functional group pairing of multifunctional scaffolds. Org Lett 9:2123–2126

    Article  CAS  Google Scholar 

  42. Efskind J, Undheim K (2003) High temperature microwave-accelerated ruthenium-catalysed domino RCM reactions. Tetrahedron Lett 44:2837–2839

    Article  CAS  Google Scholar 

  43. Gütekunst WR, Baran PS (2011) C–H functionalization logic in total synthesis. Chem Soc Rev 40:1976–1991

    Article  CAS  Google Scholar 

  44. Collet F, Lescot C, Dauban P (2011) Catalytic C–H amination: the stereoselectivity issue. Chem Soc Rev 40:1926–1936

    Article  CAS  Google Scholar 

  45. Lewis JC, Berman AM, Bergman RG, Ellman JA (2008) Rh(I)-catalyzed arylation of heterocycles via C–H bond activation: expanded scope through mechanistic insight. J Am Chem Soc 130:2493–2500

    Article  CAS  Google Scholar 

  46. Lewis JC, Wu JY, Bergman RG, Ellman JA (2006) Microwave-promoted rhodium-catalyzed arylation of heterocycles through C–H bond activation. Angew Chem Int Ed 45:1589–1591

    Article  CAS  Google Scholar 

  47. Yanagisawa S, Sudo T, Noyori R, Itami K (2006) Direct C–H arylation of (Hetero)arenes with aryl iodides via rhodium catalysis. J Am Chem Soc 128:11748–11749

    Article  CAS  Google Scholar 

  48. Yanagisawa S, Ueda K, Taniguchi T, Itami K (2008) Potassium t-butoxide alone can promote the biaryl coupling of electron-deficient nitrogen heterocycles and haloarenes. Org Lett 10:4673–4676

    Article  CAS  Google Scholar 

  49. Leadbeater NE (2010) Cross coupling: when is free really free? Nature Chem 2:1007–1009

    Article  CAS  Google Scholar 

  50. Tajuddin H, Shukla L, Maxwell AC, Marder TB, Steel PG (2010) “One-pot” tandem C–H borylation/1,4-conjugate addition/reduction sequence. Org Lett 12:5700–5703

    Article  CAS  Google Scholar 

  51. Baghbanzadeh M, Pilger C, Kappe CO (2011) Palladium-catalyzed direct arylation of heteroaromatic compounds: improved conditions utilizing controlled microwave heating. J Org Chem 76:8138–8142

    Article  CAS  Google Scholar 

  52. Johansen MB, Kerr MA (2010) Direct functionalization of indoles: copper-catalyzed malonyl carbenoid insertions. Org Lett 12:4956–4959

    Article  CAS  Google Scholar 

  53. Filler R, Saha R (2009) Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem 1:777–791

    Article  CAS  Google Scholar 

  54. Hull KL, Anani WQ, Sanford MS (2006) Palladium-catalyzed fluorination of carbon−hydrogen bonds. J Am Chem Soc 128:7134–7135

    Article  CAS  Google Scholar 

  55. Hashmi AS, Toste FD (eds) (2012) Modern gold catalyzed synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  56. Liu XY, Li CH, Che CM (2006) Phosphine gold(I)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org Lett 8:2707–2710

    Article  CAS  Google Scholar 

  57. Wang MZ, Wong MK, Che CM (2008) Gold(I)-catalyzed intermolecular hydroarylation of alkenes with indoles under thermal and microwave-assisted conditions. Chem Eur J 14:8353–8364

    Article  CAS  Google Scholar 

  58. Nieto-Oberhuber C, Pérez-Galán P, Herrero-Gómez E, Lauterbach T, Rodríguez C, López S, Bour C, Rosellón A, Cárdenas DJ, Echavarren AM (2008) Gold(I)-catalyzed intramolecular [4+2] cycloadditions of arylalkynes or 1,3-enynes with alkenes: scope and mechanism. J Am Chem Soc 130:269–279

    Article  CAS  Google Scholar 

  59. Barge A, Tagliapietra S, Binello A, Cravotto G (2011) Click chemistry under microwave or ultrasound irradiation. Curr Org Chem 15:189–203

    Article  CAS  Google Scholar 

  60. Kappe CO, Van der Eycken E (2010) Click chemistry under non-classical reaction conditions. Chem Soc Rev 39:1280–1290

    Article  CAS  Google Scholar 

  61. Munteanu M, Choi S, Ritter H (2008) Cyclodextrin methacrylate via microwave-assisted click reaction. Macromolecules 41:9619–9623

    Article  CAS  Google Scholar 

  62. Hoogenboom R, Moore BC, Schubert US (2006) Synthesis of star-shaped poly(ε-caprolactone) via ‘click’ chemistry and ‘supramolecular click’ chemistry. Chem Commun 2006(38):4010–4012

    Article  Google Scholar 

  63. Song Y, Kohlmeir EK, Meade TJ (2008) Synthesis of multimeric MR contrast agents for cellular imaging. J Am Chem Soc 130:6662–6663

    Article  CAS  Google Scholar 

  64. Fazio MA, Lee OP, Schuster DI (2008) First triazole-linked porphyrin − fullerene dyads. Org Lett 10:4979–4982

    Article  CAS  Google Scholar 

  65. Ortega-Muñoz M, Morales-Sanfrutos J, Perez-Balderas F, Giron-Gonzalez D, Sevillano-Tripero N, Salto-Gonzalez R, Santoyo-Gonzalez F (2007) Click multivalent neoglycoconjugates as synthetic activators in cell adhesion and stimulation of monocyte/machrophage cell lines. Org Biomol Chem 5:2291–2301

    Article  Google Scholar 

  66. Bouillon C, Meyer A, Vidal S, Jochum A, Chevolot Y, Cloarec J-P, Praly J-P, Vasseur J-J, Morvan F (2006) Microwave assisted “Click” chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. J Org Chem 71:4700–4702

    Article  CAS  Google Scholar 

  67. Géci V, Filichev V, Pedersen EB (2007) Stabilization of parallel triplexesby twisted intercalating nucleic acids (TINAs) incorporating 1,2,3-triazole units and prepared by microwave-accelerated click chemistry. Chem Eur J 13:6379–6386

    Article  CAS  Google Scholar 

  68. Lucas R, Zerrouki R, Granet R, Krausz P, Champavieret Y (2008) A rapid efficient microwave-assisted synthesis of a 3′,5′-pentathymidine by copper(I)-catalyzed [3+2] cycloaddition. Tetrahedron 64:5467–5471

    Article  CAS  Google Scholar 

  69. Pietrzik N, Schips C, Ziegler T (2008) Efficient synthesis of glycosylated asparaginic acid building blocks via click chemistry. Synthesis 2008(4):519–526

    Article  CAS  Google Scholar 

  70. Broggi J, Díez-González S, Petersen J, Berteina-Raboin S, Nolan SP, Agrofoglio LA (2008) Study of copper(I) catalysts for the synthesis of carbanucleosides via azide-alkyne 1,3-dipolar cycloaddition. Synthesis 2008(1):141–148

    Google Scholar 

  71. Pradere U, Roy V, McBrayer TR, Schinazi RF, Agrofoglio LA (2008) Preparation of ribavirin analogues by copper- and ruthenium-catalyzed azide-alkyne 1,3-dipolar cycloaddition. Tetrahedron 64:9044–9051

    Article  CAS  Google Scholar 

  72. Cheshev P, Marra A, Dondoni A (2006) First synthesis of 1,2,3-triazolo-linked (1,6)-α-D-oligomannoses (triazolomannoses) by iterative Cu(I)-catalyzed alkyne–azide cycloaddition. Org Biomol Chem 4:3225–3227

    Article  CAS  Google Scholar 

  73. Joosten JAF, Tholen NTH, Maate FAE, Brouwer AJ, van Esse GW, Rijkers DTS, Liskamp RMJ, Pieters RJ (2005) High-yielding microwave-assisted synthesis of triazole-linked glycodendrimers by copper-catalyzed [3+2] cycloaddition. Eur J Org Chem 3182–3185

    Google Scholar 

  74. Poon CK, Chapman R, Jolliffe KA, Perrier S (2012) Pushing the limits of copper mediated azide–alkyne cycloaddition (CuAAC) to conjugate polymeric chains to cyclic peptides. Polym Chem 3:1820–1826

    Article  CAS  Google Scholar 

  75. van Dijk M, Nollet ML, Weijers P, Dechesne AC, van Nostrum CF, Hennink WE, Rijkers DTS, Liskamp RMJ (2008) Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry. Biomacromol 9:2834–2843

    Article  CAS  Google Scholar 

  76. Braga AL, Vargas LF, Sehnem JA, Wessjohann LA (2006) Microwave-mediated palladium-catalyzed asymmetric allylic alkylation using chiral-seleno amides. Eur J Org Chem 2006(22):4993–4997

    Google Scholar 

  77. Yeager AR, Min GK, Porco JA, Schaus SE (2006) Exploring skeletal diversity via ring contraction of glycal-derived scaffolds. Org Lett 8:5065–5068

    Article  CAS  Google Scholar 

  78. Trost BM, Andersen NG (2002) Utilization of molybdenum- and palladium-catalyzed dynamic kinetic asymmetric transformations for the preparation of tertiary and quaternary stereogenic centers: a concise synthesis of tipranavir. J Am Chem Soc 124:14320–14321

    Article  CAS  Google Scholar 

  79. Appukkuttan P, Mehta VP, Van der Eycken E (2010) Microwave-assisted cycloaddition reactions. Chem Soc Rev 39:1467–1477

    Article  CAS  Google Scholar 

  80. Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27:4945–4948

    Article  CAS  Google Scholar 

  81. Majetich G, Hicks R (1995) The use of microwave heating to promote organic reactions. J Microw Power Electromagn Energy 30:27–45

    Article  Google Scholar 

  82. Loupy A, Maurel F, Sabatie-Gogova A (2004) Improvements in Diels–Alder cycloadditions with some acetylenic compounds under solvent-free microwave-assisted conditions: experimental results and theoretical approaches. Tetrahedron 60:1683–1691

    Article  CAS  Google Scholar 

  83. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47

    Article  CAS  Google Scholar 

  84. Leadbeater NE, Pillsbury SJ, Shanahan E, Williams VA (2005) An assessment of the technique of simultaneous cooling in conjunction with microwave heating for organic synthesis. Tetrahedron 61:3565–3585

    Article  CAS  Google Scholar 

  85. Hong BC, Shr YJ, Liao JH (2002) Unprecedented microwave effects on the cycloaddition of fulvenes. A new approach to the construction of polycyclic ring systems. Org Lett 4:663–666

    Article  CAS  Google Scholar 

  86. de Cózar A, Millán MC, Cebrián C, Prieto P, Díaz-Ortiz A, de la Hoz A, Cossío FP (2010) Computational calculations in microwave-assisted organic synthesis (MAOS). Application to cycloaddition reactions. Org Biomol Chem 8:1000–1009

    Article  CAS  Google Scholar 

  87. Ghoshal A, Sarkar AR, Kumaran RS, Hegde S, Manickam G, Jayashankaran J (2012) A facile stereoselective synthesis of julolidine hybrid analogs via domino knoevenagel intramolecular hetero Diels–Alder reaction. Tetrahedron Lett 53:1748–1752

    Article  CAS  Google Scholar 

  88. Long S, Monari M, Panunzio M, Bandini E, D'Aurizio A, Venturiniet A (2011) Hetero-Diels–Alder (HDA) strategy for the preparation of 6-aryl- and heteroaryl-substituted piperidin-2-one scaffolds: experimental and theoretical studies. Eur J Org Chem 6218–6225

    Google Scholar 

  89. Fordyce EAF, Morrison AJ, Sharp RD, Paton RM (2010) Microwave-induced generation and reactions of nitrile sulfides: an improved method for the synthesis of isothiazoles and 1,2,4-thiadiazoles. Tetrahedron 66:7192–7197

    Article  CAS  Google Scholar 

  90. Kranjc K, Kocevar M (2008) Ethyl vinyl ether as a synthetic equivalent of acetylene in a DABCO-catalyzed microwave-assisted Diels–Alder-elimination reaction sequence starting from 2H-Pyran-2-ones. Synlett 2008(17):2613–2616

    Article  CAS  Google Scholar 

  91. Iqbal M, Li Y, Evans P (2004) Synthesis of Δ12,14-15-deoxy-PG-J1 methyl ester and epi-Δ12-15-deoxy-PG-J1. Tetrahedron 60:2531–2538

    Article  CAS  Google Scholar 

  92. Eddolls JP, Iqbal M, Roberts SM, Santoro MG (2004) Preparation of optically pure cross-conjugated cyclopentadienones. Tetrahedron 60:2539–2550

    Article  CAS  Google Scholar 

  93. Langa F, de la Cruz P (2012) Application of microwave irradiation in carbon nanostructures. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  94. Tymoshenko DO (2008) Microwave-assisted Claisen and aza-Claisen rearrangements. Mini Rev Org Chem 5:85–95

    Article  CAS  Google Scholar 

  95. Majumdar KC, Bhattacharyya T, Chattopadhyay B, Sinha B (2009) Recent advances in the aza-Claisen rearrangement. Synthesis 2009(13):2117–2142

    Google Scholar 

  96. Besson T, Kappe CO (2012) Microwave susceptors. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  97. Martinez-Palou R (2010) Microwave-assisted synthesis using ionic liquids. Mol Divers 14:3–35

    Article  CAS  Google Scholar 

  98. Kremsner JM, Kappe CO (2009) Silicon Carbide. In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis II. Wiley, Chicester

    Google Scholar 

  99. Kremsner JM, Kappe CO (2006) Silicon carbide passive heating elements in microwave-assisted organic synthesis. J Org Chem 71:4651–4658

    Article  CAS  Google Scholar 

  100. Gutmann B, Obermayer D, Reichart B, Prekodravac B, Irfan M, Kremsner JM, Kappe CO (2010) Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors. Chem Eur J 40:12182–12194

    Article  CAS  Google Scholar 

  101. Obermayer D, Gutmann B, Kappe CO (2009) Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angew Chem Int Ed 48:8321–8324

    Google Scholar 

  102. Kappe CO, Damm M (2012) Parallel microwave chemistry in silicon carbide microtiter platforms: a review. Mol Divers 16:5–25

    Article  CAS  Google Scholar 

  103. Deshpande SJ, Leger PR, Sieck SR (2012) Tetrahedron Lett 53:1772–1775

    Article  CAS  Google Scholar 

  104. Ghosh S, Das J, Chattopadhyay S (2011) Tetrahedron Lett 52:2869–2872

    Article  CAS  Google Scholar 

  105. Staderini M, Cabezas N, Bolognesi ML, Menendez JC (2011) A general protocol for the solvent- and catalyst-free synthesis of 2-styrylquinolines under focused microwave irradiation. Synlett 2011(17): 2577–2579

    Google Scholar 

  106. Sharma LK, Kim KB, Elliott GI (2011) A selective solvent-free self-condensation of carbonyl compounds utilizing microwave irradiation. Green Chem 13:1546–1549

    Article  CAS  Google Scholar 

  107. Zhou Z-Z, Deng Y-H, Jiang Z-H, Chen W-H (2010) Microwave-assisted Dieckmann reaction: efficient one-step synthesis of 2-aroylbenzofuran-3-ols. Adv Synth Catal 352:1909–1913

    Article  CAS  Google Scholar 

  108. Yougnia R, Rochais C, de Oliveira Santos JS, Dallemagne P, Rault S (2010) One-pot synthesis of novel poly-substituted phenanthrenes. Tetrahedron 66:2803–2808

    Article  CAS  Google Scholar 

  109. Altman E, Stefanidis GD, van Gerven T, Stankiewicz A (2012) Microwave-promoted synthesis of n-propyl propionate using homogeneous zinc triflate catalyst. Ind Eng Chem Res 51:1612–1619

    Article  CAS  Google Scholar 

  110. Devine WG, Leadbeater NE, Jacob LA (2008) Titanium-catalyzed esterification and transesterification reactions facilitated using microwave heating. Future Med Chem 2:225–230

    Article  Google Scholar 

  111. Melo Júnior AR, Albuquerque CER, Carneiro JSA, Dariva C, Fortuny M, Santos AF, Egues SMS, Ramos ALD (2010) Solid-acid-catalyzed esterification of oleic acid assisted by microwave heating. Ind Eng Chem Res 49:12135–12139

    Article  CAS  Google Scholar 

  112. Zhang S, Zu Y-G, Fu Y-J, Luo M, Zhang D-Y, Efferth T (2010) Microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource Technol 101:931–936

    Article  CAS  Google Scholar 

  113. Leadbeater NE, Stencel LM (2006) Fast, easy preparation of biodiesel using microwave heating. Energy Fuels 20:2281–2283

    Article  CAS  Google Scholar 

  114. Chen K-S, Lin Y-C, Hsu K-H, Wang H-K (2012) Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 38:151–156

    Article  CAS  Google Scholar 

  115. Koberg M, Abu-Much R, Gedanken A (2011) Optimization of biodiesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst. Bioresource Technol 102:1073–1078

    Article  CAS  Google Scholar 

  116. Barnard TM, Leadbeater NE, Boucher MB, Stencel LM, Wilhite BA (2007) Continuous-flow preparation of biodiesel using microwave heating. Energy Fuels 21:1777–1781

    Article  CAS  Google Scholar 

  117. Geuens J, Kremsner JM, Nebel BA, Schober S, Dommisse RA, Mittelbach M, Tavernier S, Kappe CO, Maes BUW (2008) Microwave-assisted catalyst-free transesterification of triglycerides with 1-butanol under supercritical conditions. Energy Fuels 22:643–645

    Article  CAS  Google Scholar 

  118. Leadbeater NE, Barnard TM, Stencel LM (2008) Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heating. Energy Fuels 22:2005–2008

    Article  CAS  Google Scholar 

  119. Baghbanzadeh M, Kappe CO (2009) Can molecular sieves be used as water scavengers in microwave chemistry? Aust J Chem 62:244–249

    Article  CAS  Google Scholar 

  120. Altman E, Stefanidis GD, van Gerven T, Stankiewicz A (2010) Process intensification of reactive distillation for the synthesis of n-propyl propionate: the effects of microwave radiation on molecular separation and esterification reaction. Ind Eng Chem Res 49:10287–10296

    Article  CAS  Google Scholar 

  121. Bowman MD, Holcomb JL, Kormos CM, Leadbeater NE, Williams VA (2008) Approaches for scale-up of microwave-promoted reactions. Org Process Res Dev 12:41–57

    Article  CAS  Google Scholar 

  122. Guerrero-Sanchez C, Lobert M, Hoogenboom R, Schubert US (2007) Microwave-assisted homogeneous polymerizations in water-soluble ionic liquids: an alternative and green approach for polymer synthesis. Macromol Rapid Commun 28:456–464

    Article  CAS  Google Scholar 

  123. Chemat F, Lucchesi M-E (2006) Microwave-assisted extraction of essential oils. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  124. Raynie DE (2010) Modern extraction techniques. Anal Chem 82:4911–4916

    Article  CAS  Google Scholar 

  125. Chebanov VA, Desenko SM (2012) Multicomponent heterocyclization reactions with controlled selectivity. Chem Heterocycl Compd 48:566–583

    Article  CAS  Google Scholar 

  126. Eckert H (2012) Diversity oriented syntheses of conventional heterocycles by smart multi component reactions (MCRs) of the last decade. Molecules 17:1074–1102

    Article  CAS  Google Scholar 

  127. Kruithof A, Ruijter E, Orru RVA (2011) Microwave-assisted multicomponent synthesis of heterocycles. Curr Org Chem 15:204–236

    Article  CAS  Google Scholar 

  128. Bazureau JP, Paquin L, Carrié D, L’Helgoual’ch JM, Guihéneuf S, Coulibaly KW, Burgy G, Komaty S, Limanton E (2012) Microwaves in heterocyclic chemistry. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  129. Van der Eycken E, Kappe CO (eds) (2006) Microwave-assisted synthesis of heterocycles. Topics in heterocyclic chemistry, vol 1. Springer, Berlin

    Google Scholar 

  130. Moore KW, Pechen A, Feng X-J, Dominy J, Beltrani VJ, Rabitz H (2011) Why is chemical synthesis and property optimization easier than expected? Phys Chem Chem Phys 13:10048–10070

    Article  CAS  Google Scholar 

  131. Glasnov TN, Tye H, Kappe CO (2008) Integration of high speed microwave chemistry and a statistical ‘design of experiment’ approach for the synthesis of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron 64:2035–2041

    Article  CAS  Google Scholar 

  132. Tye H, Whittaker M (2004) Use of a design of experiments approach for the optimisation of a microwave assisted Ugi reaction. Org Biomol Chem 2:813–815

    Article  CAS  Google Scholar 

  133. Tanaka K, Kaupp G (2009) Solvent-free organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  134. Baig RBN, Varma RS (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559–1584

    Article  CAS  Google Scholar 

  135. Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41:629–639

    Article  CAS  Google Scholar 

  136. Varma RS, Baig RBN (2012) Organic synthesis using microwaves and supported reagents. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  137. Varma RS, Dahiya R, Kumar S (1997) Clay catalyzed synthesis of imines and enamines under solvent-free conditions using microwave irradiation. Tetrahedron Lett 38:2039–2042

    Article  CAS  Google Scholar 

  138. Cotterill IC, Usyatinsky AY, Arnold JM, Clark DS, Dordick JS, Michels PC, Khmelnitsky YL (1998) Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahedron Lett 39:1117–1120

    Article  CAS  Google Scholar 

  139. Varma RS, Kumar D (1999) Microwave-accelerated three-component condensation reaction on clay: solvent-free synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines. Tetrahedron Lett 40:7665–7669

    Article  CAS  Google Scholar 

  140. Williams L (2000) Thin layer chromatography as a tool for reaction optimisation in microwave assisted synthesis. Chem Commun 2000(6):435–436

    Article  Google Scholar 

  141. Collados JF, Toledano E, Guijarro D, Yus M (2012) Microwave-assisted solvent-free synthesis of enantiomerically pure N-(tert-butylsulfinyl)imines. J Org Chem 77:5744–5750

    Article  CAS  Google Scholar 

  142. Yin G, Liu Q, Ma J, Shi N (2012) Solvent- and catalyst-free synthesis of new hydroxylated trisubstituted pyridines under microwave irradiation. Green Chem 14:1796–1798

    Article  CAS  Google Scholar 

  143. Manhas MS, Ganguly SN, Mukherjee S, Jain AK, Bose AK (2006) Microwave initiated reactions: pechmann coumarin synthesis, biginelli reaction, and acylation. Tetrahedron Lett 47:2423–2425

    Article  CAS  Google Scholar 

  144. List B (ed) (2012) Asymmetric organocatalysis. Topics in current chemistry, vol 291. Springer, Berlin

    Google Scholar 

  145. Bruckmann A, Krebs A, Bolm C (2010) Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem 10:1131–1141

    Article  CAS  Google Scholar 

  146. Westermann B, Neuhaus C (2005) Dihydroxyacetone in amino acid catalyzed Mannich-type reactions. Angew Chem Int Ed 44:4077–4079

    Article  CAS  Google Scholar 

  147. Rodríguez B, Bolm C (2006) Thermal effects in the organocatalytic asymmetric Mannich reaction. J Org Chem 71:2888–2891

    Article  CAS  Google Scholar 

  148. Mossé S, Alexakis A (2006) Organocatalyzed asymmetric reactions via microwave activation. Org Lett 8:3577–3580

    Article  CAS  Google Scholar 

  149. Hagiwara H, Inotsume S, Fukushima M, Hoshi T, Suzuki T (2006) Heterogeneous amine catalyst grafted on amorphous silica: an effective organocatalyst for microwave-promoted Michael reaction of 1,3-dicarbonyl compounds in water. Chem Lett 35:926–927

    Article  CAS  Google Scholar 

  150. Octavio R, de Souza MA, Vasconcellos MLAA (2003) The use of DMAP as catalyst in the Baylis–Hillman reaction between methyl acrylate and aromatic aldehydes. Synth Commun 33:1383–1389

    Article  CAS  Google Scholar 

  151. Massi A, Nuzzi A, Dondoni A (2007) Microwave-assisted organocatalytic anomerization of α-C-glycosylmethyl aldehydes and ketones. J Org Chem 72:10279–10282

    Article  CAS  Google Scholar 

  152. Hayes BL, Collins MJ Jr (2004) Reaction and temperature control for high power microwave-assisted chemistry techniques. US Patent 6,744,024 B1

    Google Scholar 

  153. Hosseini M, Stiasni N, Barbieri V, Kappe CO (2007) Microwave-assisted asymmetric organocatalysis. a probe for nonthermal microwave effects and the concept of simultaneous cooling. J Org Chem 72:1417–1424

    Article  CAS  Google Scholar 

  154. Stolle A, Scholz P, Ondruschka B (2012) Gaseous reactants in microwave-assisted synthesis in microwaves in organic synthesis. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, vol 1 (3rd edn). Wiley-VCH, Weinheim, doi: 10.1002/9783527651313.ch11

    Google Scholar 

  155. Petricci E, Taddei M (2008) Microwave assisted reactions with gas reagents. Chem Today 26:18–22

    Google Scholar 

  156. Vanier GS (2007) Simple and efficient microwave-assisted hydrogenation reactions at moderate temperature and pressure. Synlett 2007(1):131–135

    Google Scholar 

  157. Kennedy DP, Kormos CM, Burdette SC (2009) FerriBRIGHT: a rationally designed fluorescent probe for redox active metals. J Am Chem Soc 131:8578–8586

    Article  CAS  Google Scholar 

  158. Piras L, Genesio E, Ghiron C, Taddei M (2008) Microwave-assisted hydrogenation of pyridines. Synlett 2008(8):1125–1128

    Article  CAS  Google Scholar 

  159. Kaval N, Dehaen W, Kappe CO, Van der Eycken E (2004) The effect of pressure on microwave-enhanced Diels–Alder reactions. A case study. Org Biomol Chem 2:154–156

    Article  CAS  Google Scholar 

  160. Kormos CM, Leadbeater NE (2008) Preparation of nonsymmetrically substituted stilbenes in a one-pot two-step Heck strategy using ethene as a reagent. J Org Chem 73:3854–3858

    Article  CAS  Google Scholar 

  161. Odell R, Russo F, Larhed M (2012) Molybdenum hexacarbonyl mediated CO gas-free carbonylative reactions. Synlett 23(5):685–698

    Google Scholar 

  162. Kormos CM, Leadbeater NE (2006) Microwave-promoted hydroxycarbonylation in water using gaseous carbon monoxide and pre-pressurized reaction vessels. Synlett 2006(11):1663–1666

    Article  CAS  Google Scholar 

  163. Kormos CM, Leadbeater NE (2007) Alkoxycarbonylation of aryl iodides using gaseous carbon monoxide and pre-pressurized reaction vessels in conjunction with microwave heating. Org Biomol Chem 65–68

    Google Scholar 

  164. Pizzetti M, Russo A, Petricci E (2011) Microwave-assisted aminocarbonylation of ynamides by using catalytic [Fe3(CO)12] at low pressures of carbon monoxide. Chem Eur J 17:4523–4528

    Article  CAS  Google Scholar 

  165. Salvadori J, Balducci E, Zaza S, Petricci E, Taddei M (2010) Microwave-assisted carbonylation and cyclocarbonylation of aryl iodides under ligand free heterogeneous catalysis. J Org Chem 75:1841–1847

    Article  CAS  Google Scholar 

  166. Cardullo F, Donati D, Merlo G, Paio A, Petricci E, Taddei M (2009) Microwave-assisted aminocarbonylation of aryl bromides at low carbon monoxide pressure. Synlett 2009(1):47–50

    Article  CAS  Google Scholar 

  167. Kormos CM, Leadbeater NE (2007) Alkoxycarbonylation reactions performed using near-stoichiometric quantities of CO. Synlett 2007(13):2006–2010

    Google Scholar 

  168. Petricci E, Mann A, Schoenfelder A, Taddei M (2006) Microwaves make hydroformylation a rapid and easy process. Org Lett 8:3725–3727

    Article  CAS  Google Scholar 

  169. Andappan MMS, Nilsson P, von Schenck H, Larhed M (2004) Dioxygen-promoted regioselective oxidative heck arylations of electron-rich olefins with arylboronic acids. J Org Chem 69:5212–5218

    Article  CAS  Google Scholar 

  170. Kormos CM, Hull RM, Leadbeater NE (2009) Microwave heating in conjunction with UV irradiation: a tool for the oxidation of 1,4-dihydropyridines to pyridines. Aust J Chem 62:51–57

    Article  CAS  Google Scholar 

  171. Církva V (2012) Microwaves in photochemistry and photocatalysis. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  172. Serpone N, Horikoshi S, Emeline AV (2010) Microwaves in advanced oxidation processes for environmental applications. A brief review. J Photochem Photobiol C 11:114–131

    Article  CAS  Google Scholar 

  173. Církva V, Relich S (2011) Microwave photochemistry. Applications in organic synthesis. Mini Rev Org Chem 8:282–293

    Article  Google Scholar 

  174. Matloobi M, Kappe CO (2007) Microwave synthesis in high-throughput environments. Moving from automated sequential to microtiter plate formats. Chem Today 25:26–31

    CAS  Google Scholar 

  175. Blackwell HE (2003) Out of the oil bath and into the oven – microwave-assisted combinatorial chemistry heats up. Org Biomol Chem 1:1251–1255

    Article  CAS  Google Scholar 

  176. Kappe CO, Dallinger D (2006) The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5:51–63

    Article  CAS  Google Scholar 

  177. Kappe CO, Matloobi M (2007) Parallel processing of microwave-assisted organic transformations. Comb Chem High T Scr 10:735–750

    CAS  Google Scholar 

  178. Kremsner JM, Stadler A, Kappe CO (2007) High-throughput microwave-assisted organic synthesis: moving from automated sequential to parallel library-generation formats in silicon carbide microtiter plates. J Comb Chem 9:285–291

    Article  CAS  Google Scholar 

  179. Damm M, Kappe CO (2009) High-throughput experimentation platform: parallel microwave chemistry in HPLC/GC vials. J Comb Chem 11:460–468

    Article  CAS  Google Scholar 

  180. Treu M, Karner T, Kousek R, Berger HDB, Stadler A (2008) Microwave-assisted parallel synthesis of fused heterocycles in a novel parallel multimode reactor. J Comb Chem 10:863–868

    Article  CAS  Google Scholar 

  181. Damm M, Kappe CO (2009) Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics. Mol Divers 13:529–543

    Article  CAS  Google Scholar 

  182. Stencel LM, Kormos CM, Avery KB, Leadbeater NE (2009) Assessment and use of two silicon carbide multi-well plates for library synthesis and proteolytic digests using microwave heating. Org Biomol Chem 7:2452–2457

    Article  CAS  Google Scholar 

  183. Damm M, Kappe CO (2011) A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions. Anal Chim Acta 707:76–83

    Article  CAS  Google Scholar 

  184. Prekodravac B, Damm M, Kappe CO (2011) Microwave-assisted forced degradation using high-throughput microtiter platforms. J Pharm Biomed Anal 56:867–873

    Article  CAS  Google Scholar 

  185. Damm M, Holzer M, Radspieler G, Marsche G, Kappe CO (2010) Microwave-assisted high-throughput acid hydrolysis in silicon carbide microtiter platforms – a rapid and low volume sample preparation technique for total amino acid analysis in proteins and peptides. J Chromatogr A 1217:7826–7832

    Article  CAS  Google Scholar 

  186. O’Neill JC, Blackwell HE (2007) Solid-phase and microwave-assisted syntheses of 2,5-diketopiperazines: small molecules with great potential. Comb Chem High T Scr 10:857–876

    Google Scholar 

  187. Dai WM, Shi J (2007) Diversity-oriented synthesis and solid-phase organic synthesis under controlled microwave heating. Comb Chem High T Scr 10:837–856

    CAS  Google Scholar 

  188. Pérez R, Beryozkina T, Zbruyev OI, Haas W, Kappe CO (2002) Traceless solid-phase synthesis of bicyclic dihydropyrimidones using multidirectional cyclization cleavage. J Comb Chem 4:501–510

    Article  CAS  Google Scholar 

  189. Cerezo V, Amblard M, Martinez J, Verdié P, Planas M, Feliu L (2008) Solid-phase synthesis of 5-arylhistidines via a microwave-assisted Suzuki–Miyaura cross-coupling. Tetrahedron 64:10538–10545

    Article  CAS  Google Scholar 

  190. Tsukamoto H, Suzuki R, Kondo Y (2006) Revisiting benzenesulfonyl linker for the deoxygenation and multifunctionalization of phenols. J Comb Chem 8:289–292

    Article  CAS  Google Scholar 

  191. Tullberg M, Luthman K, Grøtli M (2006) Microwave assisted solid-phase synthesis of 2,5-diketopiperazines: solvent and resin dependence. J Comb Chem 8:915–922

    Article  CAS  Google Scholar 

  192. Henkel B (2004) Synthesis of imidazole-4-carboxylic acids via solid-phase bound 3-N, N-(Dimethylamino)-2-isocyanoacrylate. Tetrahedron Lett 45:2219–2221

    Article  CAS  Google Scholar 

  193. Schobert R, Jagusch C (2003) Solid-phase domino syntheses of functionalized tetronates with Ph3P=C=C=O. Tetrahedron Lett 44:6449–6451

    Google Scholar 

  194. Kumar HMS, Anjaneyulu S, Reddy BVS (2000) Microwave-assisted rapid Claisen rearrangements on solid phase. Synlett 2000(8):1129–1130

    Article  Google Scholar 

  195. Feliu L, Vera-Luque P, Albericio F, Álvarez M (2007) Advances in solid-phase cycloadditions for heterocyclic synthesis. J Comb Chem 9:521–565

    Article  CAS  Google Scholar 

  196. Blackwell HE (2006) Hitting the SPOT: small molecule macroarrays advance combinatorial synthesis. Curr Opin Chem Biol 10:203–212

    Article  CAS  Google Scholar 

  197. Bowman MD, Jacobson MM, Blackwell HE (2006) Discovery of fluorescent cyanopyridine and deazalumazine dyes using small molecule macroarrays. Org Lett 8:1645–1648

    Article  CAS  Google Scholar 

  198. Wiles C, Watts P (2011) Recent advances in micro reaction technology. Chem Comm 47:6512–6535

    Article  CAS  Google Scholar 

  199. Wegner J, Ceylan S, Kirschning A (2011) Ten key issues in modern flow chemistry. Chem Comm 47:4583–4592

    Article  CAS  Google Scholar 

  200. Alcázar J, AdeM M (2012) Microwave-assisted continuous flow organic synthesis (MACOS). In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  201. Comer E, Organ MG (2005) A microreactor for microwave-assisted capillary (continuous flow) organic synthesis. J Am Chem Soc 127:8160–8167

    Article  CAS  Google Scholar 

  202. Comer E, Organ MG (2005) A microcapillary system for simultaneous, parallel microwave-assisted synthesis. Chem Eur J 11:7223–7227

    Article  CAS  Google Scholar 

  203. Shore G, Morin S, Organ MG (2006) Catalysis in capillaries by Pd thin films using microwave-assisted continuous flow organic synthesis (MACOS). Angew Chem Int Ed 45:2761–2766

    Article  CAS  Google Scholar 

  204. Shore G, Organ MG (2008) Diels–Alder cycloadditions by microwave-assisted, continuous flow organic synthesis (MACOS): the role of metal films in the flow tube. Chem Commun 2008(7):838–840

    Article  Google Scholar 

  205. Moseley JD (2010) Microwave heating as a tool for process chemistry. In: Leadbeater NE (ed) Microwave heating as a tool for sustainable chemistry. CRC, Boca Raton

    Google Scholar 

  206. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885–900

    Article  CAS  Google Scholar 

  207. Strauss CR (2009) On scale up of organic reactions in closed vessel microwave systems. Org Process Res Dev 13:915–923

    Article  CAS  Google Scholar 

  208. Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13:794–806

    Article  CAS  Google Scholar 

  209. Devine WG, Leadbeater NE (2011) Probing the energy efficiency of microwave heating and continuous-flow conventional heating as tools for organic chemistry. ARKIVOC 2011(5):127–143. doi:10.3998/ark.5550190.0012.512

    Google Scholar 

  210. Hoogenboom R, Wilms TFA, Erdmenger T, Schubert US (2009) Microwave-assisted chemistry: a closer look at heating efficiency. Aust J Chem 62:236–243

    Google Scholar 

  211. Robinson J, Kingman S, Irvine D, Licence P, Smith A, Dimitrakis G, Obermayer D, Kappe CO (2010) Understanding microwave heating effects in single mode type cavities – theory and experiment. Phys Chem Chem Phys 12:4750–4758

    Article  CAS  Google Scholar 

  212. Godwin DR, Lawton SJ, Moseley JD, Welham MJ, Weston NP (2010) Energy efficiency of conventionally-heated pilot plant reactors compared with microwave reactors. Energy Fuels 24:5446–5453

    Article  CAS  Google Scholar 

  213. Barnard TM, Vanier GS, Collins MJ (2006) Scale-up of the green synthesis of azacycloalkanes and isoindolines under microwave irradiation. Org Process Res Dev 10:1223–1237

    Article  CAS  Google Scholar 

  214. Leadbeater NE, Williams VA, Barnard TM, Collins MJ (2006) Open-vessel microwave-promoted Suzuki reactions using low levels of palladium catalyst: optimization and scale-up. Org Process Res Dev 10:833–837

    Article  CAS  Google Scholar 

  215. Leadbeater NE, Williams VA, Barnard TM, Collins MJ (2006) Solvent-free, open-vessel microwave-promoted Heck couplings: from the mmol to the mol scale. Synlett 2006(18):2953–2958

    Google Scholar 

  216. Alcázar J, Diels G, Schoentjes B (2004) Reproducibility across microwave instruments: first example of genuine parallel scale up of compounds under microwave irradiation. QSAR Comb Sci 23:906–910

    Google Scholar 

  217. Stadler A, Yousefi BH, Dallinger D, Walla P, Van der Eycken E, Kaval N, Kappe CO (2003) Scalability of microwave-assisted organic synthesis. from single-mode to multimode parallel batch reactors. Org Process Res Dev 7:707–716

    Article  CAS  Google Scholar 

  218. Marafie JA, Moseley JD (2010) The application of stop-flow microwave technology to scaling-out SNAr reactions using a soluble organic base. Org Biomol Chem 8:2219–2227

    Google Scholar 

  219. Loones KTJ, Maes BUW, Rombouts G, Hostyn S, Diels G (2005) Microwave-assisted organic synthesis: scale-up of palladium-catalyzed aminations using single-mode and multi-mode microwave equipment. Tetrahedron 61:10338–10348

    Article  CAS  Google Scholar 

  220. Arvela RK, Leadbeater NE, Collins MJ (2005) Automated batch scale-up of microwave-promoted Suzuki and Heck coupling reactions in water using ultra-low metal catalyst concentrations. Tetrahedron 61:9349

    Article  CAS  Google Scholar 

  221. Pitts MR, McCormack P, Whittall J (2006) Optimisation and scale-up of microwave assisted cyanation. Tetrahedron 62:4705–4708

    Article  CAS  Google Scholar 

  222. Dallinger D, Lehmann H, Moseley JD, Stadler A, Kappe CO (2011) Scale-up of microwave-assisted reactions in a multimode bench-top reactor. Org Process Res Dev 15:841–854

    Article  CAS  Google Scholar 

  223. Schmink JR, Kormos CM, Devine WG, Leadbeater NE (2010) Exploring the scope for scale-up of organic chemistry using a large batch microwave reactor. Org Process Res Dev 14:205–214

    Article  CAS  Google Scholar 

  224. Iannelli M, Bergamelli F, Kormos CM, Paravisi S, Leadbeater NE (2009) Application of a batch microwave unit for scale-up of alkoxycarbonylation reactions using a near-stoichiometric loading of carbon monoxide. Org Process Res Dev 13:634–637

    Article  CAS  Google Scholar 

  225. Wagner RW, Brownell JH (2012) Combining microwaves with continuous flow. Specialty Chemicals Magazine, November 2012, pp. 24–26

    Google Scholar 

  226. Morschhäuser R, Krull M, Kayser C, Boberski C, Bierbaum R, Püschner PA, Glasnov TN, Kappe CO (2012) Microwave-assisted continuous flow synthesis on industrial scale. Green Process Synth 1:281–290

    Google Scholar 

  227. Glasnov TN, Kappe CO (2011) The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chem Eur J 17:11956–11968

    Article  CAS  Google Scholar 

  228. Bose AK, Banik BK, Lavlinskia N, Jayaraman M, Manhas MS (1997) MORE chemistry in a microwave. Chemtech 27:18–24

    CAS  Google Scholar 

  229. Leadbeater NE, Schmink JR, Hamlin TA (2012) Tools for monitoring reactions performed using microwave heating. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  230. Bowman MD, Leadbeater NE, Barnard TM (2008) Watching microwave-promoted chemistry: reaction monitoring using a digital camera interfaced with a scientific microwave apparatus. Tetrahedron Lett 49:195–198

    Article  CAS  Google Scholar 

  231. Leadbeater NE (2010) In situ reaction monitoring of microwave-mediated reactions using IR spectroscopy. Chem Commun 46:6693–6695

    Article  CAS  Google Scholar 

  232. Leadbeater NE, Schmink JR (2008) Use of Raman spectroscopy as a tool for in situ monitoring of microwave-promoted reactions. Nat Protoc 3:1–7

    Article  CAS  Google Scholar 

  233. Heller E, Klöckner J, Lautenschläger W, Holzgrabe U (2010) Online monitoring of microwave-enhanced reactions by UV/Vis spectroscopy. Eur J Org Chem 5:3569–3573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Leadbeater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leadbeater, N.E. (2014). Microwave-Assisted Synthesis: General Concepts. In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2013_274

Download citation

Publish with us

Policies and ethics