Skip to main content

Platelet Glutamate Receptors as a Window into Psychiatric Disorders

  • Chapter

3. Conclusion

Much research remains to be done. The state trait nature of the marker needs to be elucidated. It would be illuminating to know if the marker settled with improvement in clinical condition. Treatment specificity with regard to the marker would also be interesting. It would be illuminating to know if the marker had any predictive value in terms of treatment. More research in a wider range of psychiatric illnesses would be interesting. It is also necessary to look at studies to correlate the peripheral marker with central markers to validate the use of peripheral markers.

It is hoped that platelet intracellular second messenger responses to glutamate will reflect the pathogenesis of the disease processes. Further development of these accessible and practical markers may allow for a better understanding of these disorders, and may guide in the rational development of treatments of these conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almazov, V.A., Y.G. Popov, A.I. Gordoinsky, I.A. Mikhailova, S.A. Dambinova, and V.S. Gurevich (1988). The sites of high affinity binding of L-[3H] glutamic acid in human platelets: A new type of platelet receptor? Biokhimiia 53(5), 848–852.

    PubMed  CAS  Google Scholar 

  • Altamura, C.A., M.C. Mauri, A. Ferrara, A.R. Moro, G. D’Andrea, and F. Zamberlan (1993). Plasma and platelet excitatory amino acids in psychiatric disorders. Am. J. Psychiatry 150, 1731–1733.

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, text revision, 4th ed. American Psychiatric Association 2000, Washington DC.

    Google Scholar 

  • Aparicio-Leagarza, M.I., B. Davis, P.H. Hutson, and G.P. Reynolds (1998). Increased density of glutamate/N-methyl-D-aspartate receptors in putamen from schizophrenic patients. Neurosci. Lett. 241, 143–146.

    Article  Google Scholar 

  • Arora, R.C. and H.Y. Meltzer (1989). Increased serotonin 2 receptor binding as measured by 3H-LSD binding in blood platelets of depressed patients. Life Sci. 44, 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Arora, R.C. and H.Y. Meltzer (1993). Serotonin 2 receptor binding in blood platelets of schizophrenic patients. Psychiatry Res. 47, 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Bakish, D., P. Cavazzoni, J. Chudzik et al. (1997). Effects of serotonin reuptake inhibitors on platelet serotonin parameters in major depressive disorder. Biol. Psychiatry 41, 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Berk, M., W. Bodemer, T. Van Oudenhove et al. (1994). Dopamine increases platelet intracellular calcium in bipolar disorder and controls. International Clin. Pharmacol. 9, 291–293.

    CAS  Google Scholar 

  • Berk, M., H. Plein, and B. Belsham (2000). The specificity of the platelet glutamate receptor supersensitivity in psychotic disorders. Life Sci. 66, 2427–2432.

    PubMed  CAS  Google Scholar 

  • Berk, M., H. Plein, and T. Czismadia (1999). Supersensitive platelet glutamate receptors as a possible peripheral marker in schizophrenia. International Clin. Psychopharmacol. 14, 119–122.

    Article  CAS  Google Scholar 

  • Berk, M., H. Plein, and D. Ferreira (2000). Platelet glutamate supersensitivity in depression. Int. J. Neuropsychopharmacol. 3(Suppl 1), S112.

    Google Scholar 

  • Berk, M., H. Plein, D. Ferreira, and B. Jersky (2001). Blunted adenosine A2a receptor function in platelets in patients with major depression. Eur. Neuropsychopharmacol. 11(2), 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Berman, R.M., A. Cappiello, A. Anand, D.A. Oren, G.R. Heninger, D.S. Charney et al. (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Biegon, A., A. Grinspoon, B. Blumenfeld et al. (1990). Increased serotonin 5HT2 receptor binding on blood platelets of suicidal men. Psychopharmacology (Berl) 100(2), 165–167.

    Article  PubMed  CAS  Google Scholar 

  • Bouron, A and J.Y. Chatton (1999). Acute application of the tricyclic antidepressant desipramine presynaptically stimulates the exocytosis of glutamate in the hippocampus. Neuroscience 90, 729–736.

    Article  PubMed  CAS  Google Scholar 

  • Breese, G., D. Knapp, and S. Moy (2002). Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: Potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci. Biobehav. Rev. 26(4), 441.

    Article  PubMed  CAS  Google Scholar 

  • Butler, J., A. O’Halloran, and B.E. Leonard (1992). The Galway study of panic disorder II changes in some peripheral markers of noradrenergic and serotonergic function in DSM III-R panic disorder. J. Affect Disord. 26(2), 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Calabrese, J.R., C.I. Bowden, G.S. Sacks, J.A. Ascher, E. Monaghn, and G.D. Rudd (1999). A double blind placebo controlled study of lamotrigine monotherapy in outpatients with bipolar 1 depression. J. Clin. Psychiatry 60, 79–88.

    PubMed  CAS  Google Scholar 

  • Camacho, A. and J.E. Dimsdale (2000). Platelets and psychiatry: Lessons learned from old and new studies. Psychosom. Med. 62, 326–336.

    PubMed  CAS  Google Scholar 

  • Da Prada, M., A.M. Cesura, J.M. Launay et al. (1988). Platelets as a model for neurones? Experentia 44, 115–126.

    Article  Google Scholar 

  • Das, I., N.S. Khan, B.K. Puri, S.R. Sooranna, J. de Belleroche, and S.R. Hirsch (1995). Elevated platelet calcium mobilization and nitric oxide synthase activity may reflect abnormalities in schizophrenic brain. Biochem. Biophys. Res. Commun. 212(2), 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky, S.L., J. Christiano, L.C. Daniell et al. (1989). Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch. Gen. Psychiatry 46, 632–638.

    PubMed  CAS  Google Scholar 

  • Ferrari, M.D., J. Odink, K.D. Bos, M.J. Malessy, and G.W. Bruyn (1990). Neuroexitatory amino acids are elevated in migraine. Neurology 40, 1582–1586.

    PubMed  CAS  Google Scholar 

  • Franconi, F., M. Miceli, L. Alberti, G. Seghieri, M.G. De Montis, and A. Tagliamonte (1998). Further insights into the anti aggregating activity of NMDA in human platelets. Br. J. Pharmacol. 124, 35–40

    Article  PubMed  CAS  Google Scholar 

  • Franconi, F., M. Miceli, M.G. De Montis, E.L. Crisafi, F. Bennardini, and A. Tagliamonte (1996). NMDA receptors play an anti aggregating role in human platelets. Thromb. Haemost. 76, 84–87.

    PubMed  CAS  Google Scholar 

  • Gluck, M.R., R.G. Thomas, K.L. Davis, and V. Haroutunian (2002). Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am. J. Psychiatry 159(7), 1165–1173.

    Article  PubMed  Google Scholar 

  • Goff, D.C., J. Hennen, I.K. Lyoo, G. Tsai, L.L. Wald, A.E. Evins et al. (2002). Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to olanzapine. Biol. Psychiatry 51(6), 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Grant, E.R., B.J. Bacskai, D.E. Pleasure et al. (1997). N-methyl-D-aspartate receptors expressed in a non-neuronal cell line mediate subunit-specific increases in free intracellular calcium. J. Biol. Chem. 272, 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Healy, D. and B.E. Leonard (1987). Monoamine transport in depression: Kinetics and dynamics. J. Affect. Disord. 12(2), 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Heckers, S. and C. Konradi (2002). Hippocampal neurons in schizophrenia. J. Neural. Transm. 109(5–6), 891–905.

    Article  PubMed  CAS  Google Scholar 

  • Javitt, D.C. and S.R. Zukin (1991). The role of excitatory amino acids in neuropsychiatric illness. Am. J. Psychiatry 148, 1301–1308.

    PubMed  CAS  Google Scholar 

  • Kim, J.S., H.H. Kornhuber, W. Schmid-Burgk et al. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 20, 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Konopka, L.M., R. Cooper, and J.W. Crayton (1996). Serotonin-induced increases in platelet cytosolic calcium in depressives, schizophrenic, and substance abuse patients. Biol. Psychiatry 39, 708–713.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, B.E. (1992). Fundamentals of Psychopharmacology. John Wiley Publishers, Chichester.

    Google Scholar 

  • Maes, M., R. Verkerk, E. Vandoolaeghe, A. Lin, and S. Scharpe (1998). Serum levels of excitatory amino acids, serine glyceine, histidine, threonine, taurine, alanine and arginine in treatment resistant depression: Modulation by treatment with antidepressants and prediction of clinical responsivity. Acta. Psychiatr. Scand. 97, 302–308.

    PubMed  CAS  Google Scholar 

  • Mangano, R.M. and R. Schwarcz (1981). The human platelet as a model for the glutamatergic neuron: Platelet uptake of L-glutamate. J. Neurochem. 36, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  • Mauri, M.C., A. Ferrara, L. Boscati, S. Bravin, F. Zamberlan, M. Alecci et al. (1998). Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37, 124–129.

    Article  PubMed  CAS  Google Scholar 

  • Mikuni, M., A. Kagaya, K. Takahashi et al. (1992). Serotonin but not norepinephrine induced calcium mobilization of platelets is enhanced in affective disorders. Psychopharmacology 106, 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, G., Y. Li, and I.A. Paul (1996). Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram treatment. Eur. J. Pharmacol. 295, 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.E. and N.B. Farber (1995). Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52, 998–1007.

    PubMed  CAS  Google Scholar 

  • Pangalos, M.N., A.I. Malizia, P.T. Francis, S.I. Lowe, P.H. Bertolucci, A.W. Procter et al. (1992). Effects of psychotropic drugs on excitatory amino acids in patients undergoing psychosurgery for depression. Br. J. Psychiatry 160, 638–642.

    PubMed  CAS  Google Scholar 

  • Pearse, A.G.E. (1986). The diffuse neuroendocrine system: Peptides, amines, placodes and the APUD theory. Prog Brain Res. 68, 25–31.

    PubMed  CAS  Google Scholar 

  • Reilmann, R., L.H. Rolf, and H.W. Lange, (1994). Huntington’s disease: The neuroexcitotoxin aspartate is increased in platelets and decreased in plasma. J. Neurol. Sci. 127, 48–53.

    Article  PubMed  CAS  Google Scholar 

  • Ripova, D., A. Strunecka, V. Nemcova, and I. Farska (1997). Phospholipids and calcium alteration in platelets of schizophrenic patients. Physiol. Res. 46, 59–68.

    PubMed  CAS  Google Scholar 

  • Ripova, D., A. Strunecka, V. Platilova, and C. Hoschl, (1999). Phosphoinositide signalling system in platelets of schizophrenic patients and the effect of neuroleptic therapy. Prostaglandins, Leukot. Essent. Fatty Acids 61, 125–129.

    Article  CAS  Google Scholar 

  • Sneddon, J.M. (1973). Blood platelets as a model for monoamine containing neurons. Prog. Neurobiol. 1, 151–198.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, S.M. (1977). The human platelet: A diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch. Gen. Psychiatry 34, 509–516.

    PubMed  CAS  Google Scholar 

  • Tsai, G. and Coyle, J.T. (2002). Glutamatergic mechanisms in schizophrenia. Annu. Rev. Pharmacol. Toxicol. 42, 165–179.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, G., L.A. Passani, B.S. Slusher et al. (1995). Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch. Gen. Psychiatry 52, 829–836.

    PubMed  CAS  Google Scholar 

  • Ulas, J. and C.W. Cotman (1993). Excitatory amino acid receptors in schizophrenia. Schizophr. Bulle. 19(1), 105–113.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Berk, M. (2005). Platelet Glutamate Receptors as a Window into Psychiatric Disorders. In: Gill, S., Pulido, O. (eds) Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS. Springer, Boston, MA. https://doi.org/10.1007/0-306-48644-X_15

Download citation

Publish with us

Policies and ethics